二分查找的伪代码
二分的本质:对于一组有序的数据,进行不断地折半查找
这里以数组为例说明情况
left = 0, right = n -1
while (left <= right)
mid = (left + right) / 2
case
x[mid] < t: left = mid + 1;
x[mid] = t: p = mid; break;
x[mid] > t: right = mid -1;
return -1
二分查找书写代码的关键
1、左闭右开的正确代码
int l = 0,r = n;
while(l < r){
int mid = l + (r - l) / 2;
if(a[mid] > value)
r = mid;
else if(a[mid] < value)
l = mid + 1;
else break;
}
2、左闭右闭的正确代码
int l = 0,r = n - 1;
while(l <= r){
int mid = l + (r - l) / 2;
if(a[mid] > value)
r = mid - 1;
else if(a[mid] < value)
l = mid + 1;
else break;
}
记忆方法
左闭右闭:由于是闭,left <= right, 偏大,right = mid - 1 偏小,left = mid + 1
其中的right也需要按照要求来
左闭右开:由于是开,left < right, 偏大,right = mid 偏小,left - mid + 1
其中的right尽量不动
下面我们讨论算法的优化问题 ,从算法珠玑上看的
int left, right, middle;
l = -1, r = n;
while (l + 1 != r){
//循环条件为当l和r不相邻的时候
mid = l + (r - l) / 2;
if (a[mid] < value)
l = mid;
else
r = mid;
}
//声明,我们使用的是right,所以我们else的情况,即当大于等于的情况应该归为r的情况!!
if (r >= n || a[r] != value)//如果最后出来的这个结果,r在数组范围之外,或者是并不为答案,那么返回-1
r = -1;
return r;
不知道咋回事,咱用着就是错的
对于实数域上的二分的写法
经常用于解方程以及二分答案等问题
while(r - l > eps){
mid = l + (r - l) / 2;
if(check(mid) > value){
r = mid;
}
else{
l = mid;
}
}
//这里面,不需要考虑关于l和r的变化问题,直接变为mid即可
//综上所述,我们永远只使用上面的!!!