关于二分查找的深入思考以及模板

二分查找的伪代码

二分的本质:对于一组有序的数据,进行不断地折半查找
这里以数组为例说明情况

left = 0, right = n -1
while (left <= right)
    mid = (left + right) / 2
    case
        x[mid] < t:    left = mid + 1;
        x[mid] = t:    p = mid; break;
        x[mid] > t:    right = mid -1;

return -1

二分查找书写代码的关键

  • 对于区间的把握,左闭右闭或者左闭右开

  • 对于while循环的条件,left<right或是left<=right

1、左闭右开的正确代码
int l = 0,r = n;
while(l < r){
	int mid = l + (r - l) / 2;
	if(a[mid] > value)
		r = mid;
	else if(a[mid] < value)
		l = mid + 1;
	else break;
}
2、左闭右闭的正确代码
int l = 0,r = n - 1;
while(l <= r){
	int mid = l + (r - l) / 2; 
	if(a[mid] > value)
		r = mid - 1;
	else if(a[mid] < value)
		l = mid + 1;
	else break;
} 
记忆方法
左闭右闭:由于是闭,left <= right,	偏大,right = mid - 1	偏小,left = mid + 1
			其中的right也需要按照要求来

左闭右开:由于是开,left < right,	偏大,right = mid	    偏小,left - mid + 1
			其中的right尽量不动

下面我们讨论算法的优化问题 ,从算法珠玑上看的

int left, right, middle;
l = -1, r = n;
while (l + 1 != r){
	//循环条件为当l和r不相邻的时候 
    mid = l + (r - l) / 2;

    if (a[mid] < value)
        l = mid;
    else
        r = mid;
}
//声明,我们使用的是right,所以我们else的情况,即当大于等于的情况应该归为r的情况!! 
if (r >= n || a[r] != value)//如果最后出来的这个结果,r在数组范围之外,或者是并不为答案,那么返回-1 
    r = -1;
return r;

不知道咋回事,咱用着就是错的

对于实数域上的二分的写法

经常用于解方程以及二分答案等问题

while(r - l > eps){
	mid = l + (r - l) / 2;
	if(check(mid) > value){
		r = mid;
	}
	else{
		l = mid;
	}
} 
//这里面,不需要考虑关于l和r的变化问题,直接变为mid即可 

//综上所述,我们永远只使用上面的!!!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值