自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(201)
  • 资源 (1)
  • 收藏
  • 关注

原创 Json rpc 2.0比起传统Json在通信中的优势

JSON-RPC 2.0 相较于传统 JSON 通信,在协议规范性、开发效率和通信性能方面具有显著优势。它通过标准化的请求-响应模型,统一了请求格式和错误处理,降低了开发成本。JSON-RPC 2.0 支持批量请求和异步通知,提升了传输效率,并减少了网络资源浪费。此外,它具有跨平台和语言中立性,适应多种传输协议和编程语言。JSON-RPC 2.0 还支持元数据扩展和安全增强,适用于 AI Agent 协作、微服务通信和实时数据流等场景。总体而言,JSON-RPC 2.0 通过协议标准化和性能优化,解决了传统

2025-05-16 09:25:24 905

原创 文档多模态识别工具对比:MinerU、PaddleOCR、Marker

本文对比了三款文档多模态识别工具:MinerU、PaddleOCR和Marker。MinerU专注于中文文档的端到端解析,支持复杂元素提取和结构化输出,适合中文论文和教材解析。PaddleOCR是通用OCR工具包,支持多语言和全流程任务,适用于发票、车牌等图像OCR。Marker则注重多语言支持和轻量化部署,适合英文论文和技术文档的快速转换。三者在核心技术、中文优化、表格处理、输出格式、部署复杂度和适用语言等方面各有优劣。选型建议根据具体需求:MinerU适合高精度中文解析,PaddleOCR适合定制化OC

2025-05-15 11:25:30 832

原创 RAG技术体系问题的系统性总结

• 混合检索(Hybrid Search):结合语义向量(如BERT嵌入)与关键词匹配(BM25),兼顾语义与精确性(网页7)。• 多模态RAG:结合CLIP(图像)、Table-BERT(表格)嵌入,支持跨模态检索(网页13)。• 解决LLM的遗忘问题,提升回答的准确性(基于事实)、时效性(动态更新)、权威性(引用可信源)。• 向量检索模型:常用BM25(稀疏检索)、DPR(密集检索)、HyDE(假设性文档嵌入)。模块化RAG:支持迭代检索(多次检索逐步细化)、自适应检索(动态调整检索量)。

2025-05-07 16:58:34 434

原创 REST API、FastAPI与Flask API的对比分析

追求性能与现代化特性:优先选择FastAPI,尤其在异步、数据验证和文档自动化需求强烈的场景。快速迭代与灵活定制:Flask凭借轻量级和成熟生态,仍是小型项目或传统架构的首选。REST合规性:两者均可实现RESTful设计,但FastAPI通过类型系统强制提升了接口规范性。

2025-05-01 14:50:58 1098

原创 LangChain的向量RAG与MCP在意图识别的主要区别

【代码】LangChain的向量RAG与MCP在意图识别的主要区别。

2025-04-30 21:17:25 366

原创 MCP协议技术解析与Python代码实现——基于JSON-RPC 2.0的双向转换实践

—基于JSON-RPC 2.0的双向转换实践。通过URI模式匹配实现请求自动路由。支持同时处理多个工具调用请求。通过装饰器实现权限校验。

2025-04-30 20:46:29 387

原创 MCP协议:自然语言与结构化数据的双向桥梁 ——基于JSON-RPC 2.0的标准化实践

MCP协议通过JSON-RPC 2.0的标准化框架,实现了自然语言与结构化数据的双向自由流动。随着协议生态的完善(如服务注册中心的建立),MCP有望成为智能时代的通用通信基础设施。MCP(Model Context Protocol)是Anthropic于2024年提出的开放通信协议,其核心价值在于建立自然语言与结构化数据之间的双向桥梁。标准化通信框架(协议版本固定为"2.0"),将自然语言解析为结构化请求(如SQL查询、API参数),再将执行结果转换为自然语言反馈,形成闭环的“思考-行动-观察”流程。

2025-04-30 20:45:46 1287

原创 阿里千问Qwen3技术解析与部署指南 :混合推理架构突破性优势与对DeepSeek R1的全面超越

Qwen3采用混合专家(Mixture-of-Experts,MoE)架构,旗舰模型Qwen3-235B-A22B总参数2350亿,但激活参数仅22B,效率是传统稠密模型的10倍。• 慢思考:对复杂任务(数学推理、代码生成),模型启用多步推理链(Chain of Thought),通过自我事实核查和逻辑推导提升准确性。• 提供8款模型(2款MoE+6款稠密),覆盖0.6B到235B参数规模,支持手机端(4B)、汽车端(8B)及企业级(32B)部署。

2025-04-29 17:12:15 2491 1

原创 MCP开发实战(三)碾压RAG Text2SQL的数据库问答,基于MCP协议将MongoDB Atlas转化为智能问答终端,在VScode利用Cline与mcp-mongo-server实现数据库问答

由 Cline 发布的一个小型命令行服务器,能够将 MongoDB 查询“对话化”地暴露给客户端:专门针对 MongoDB Atlas 集群开发的 MCP Server,支持交互式查询、只读模式等。

2025-04-26 17:44:00 1143

原创 Dify与n8n深度对比:AI应用开发与自动化工作流的双轨选择

• 定位:专注于跨系统工作流自动化,通过节点式设计连接API、数据库及硬件设备,适合复杂业务流程的深度集成(如ERP系统联动、DevOps自动化)。• 架构特点:内置RAG(检索增强生成)框架,支持多模型热切换(如GPT-4、DeepSeek等),并通过可视化界面简化AI工作流编排。• 定位:以LLM(大语言模型)为核心,提供从模型集成到应用部署的全链路支持,适合快速构建AI驱动型应用(如智能客服、内容生成工具)。• 适用团队:AI实验室、产品经理主导的快速原型开发团队,需低门槛实现AI能力落地。

2025-04-26 17:01:55 1415

原创 LangChain 中的 Task(任务) 主要通过 生成器(Generator) 实现,而非传统的迭代器(Iterator)

本文以Text2SQL这一典型场景为切入点,深入解析RAG技术的核心流程及其优化策略。RAG技术为Text2SQL带来的不仅是准确率的提升,更是打开了自然语言与结构化数据自由对话的新纪元。在数字化转型的浪潮中,掌握RAG技术的企业将率先建立起面向自然语言的智能数据访问层,真正实现"用人类的方式对话数据"的技术理想。• 模式检索:通过对比用户问题与数据库表结构(字段名、数据类型、外键关系)的语义相似度,精准定位相关数据表。RAG技术解析:以Text2SQL为例看检索增强生成的全流程应用。

2025-04-26 15:07:00 314

原创 RAG技术解析:以Text2SQL为例看检索增强生成的全流程应用

本文以Text2SQL这一典型场景为切入点,深入解析RAG技术的核心流程及其优化策略。RAG技术为Text2SQL带来的不仅是准确率的提升,更是打开了自然语言与结构化数据自由对话的新纪元。在数字化转型的浪潮中,掌握RAG技术的企业将率先建立起面向自然语言的智能数据访问层,真正实现"用人类的方式对话数据"的技术理想。• 模式检索:通过对比用户问题与数据库表结构(字段名、数据类型、外键关系)的语义相似度,精准定位相关数据表。RAG技术解析:以Text2SQL为例看检索增强生成的全流程应用。

2025-04-26 15:04:47 914

原创 基于 RAG 的 Text2SQL 全过程的 Python 实现详解,结合 LangChain 框架实现自然语言到 SQL 的转换

• 支持多表 JOIN 查询的自动识别(通过 Schema 中的外键关系)(注:实际部署时需根据具体数据库类型调整连接参数,完整代码示例参考实现)• 通过向量检索历史 SQL 查询,为 LLM 提供上下文参考。• FastGPT 的 Schema Encoder 实现思路。• 动态注入数据库 Schema(包含表结构、字段类型)• 可扩展添加自动修正模块(基于错误信息重新生成查询)• 实现多步推理机制(先识别实体,再生成查询)三、RAG-Text2SQL 核心实现。五、关键实现细节说明。

2025-04-26 13:49:24 613

原创 n8n、LangChain和MCP三者区别,LangChain Agent 通过 MCP 调用 n8n 工作流的技术实现

• MCP提供标准化工具接口,LangChain负责决策何时调用工具。• 模块化组件:包含记忆模块(ConversationBufferMemory)、工具代理(Agents)、检索增强(RAG)等,需编程实现逻辑。• 协议层抽象:定义工具(Tools)、资源(Resources)、提示词(Prompts)等核心组件,兼容HTTP/Stdio等多种传输方式。• 定位:专为LLM(大语言模型)应用设计,提供任务编排、工具集成、上下文管理等能力,用于构建复杂AI代理(如问答系统、RAG应用)。

2025-04-26 10:45:39 801

原创 MongoDB Atlas与MongoDB连接MCP服务器的区别解析

例如,在Cline中配置MCP服务器时,需指定本地IP和端口,并确保Node.js环境已安装以运行。对于需要快速构建AI驱动的数据应用(如推荐系统、知识库问答)的场景,MongoDB Atlas的向量搜索能力显著优于本地部署方案。• 语义搜索:结合LLM生成嵌入向量,实现自然语言查询数据库(如“查找与‘悲伤电影’相关的条目”)。• 访问控制:细粒度RBAC(基于角色的访问控制),可限制特定用户或应用的操作权限。• 开箱即用的向量搜索:无需自建算法库,通过原生API实现高性能ANN。例如,通过第三方库(如。

2025-04-26 10:39:01 970

原创 MCP开发实战(二)在VScode利用 Cline 与 mcp-mongo-server,将 MongoDB Atlas 转为智能问答终端、MongoDB 数据库的问答交互AI问答

本文首先介绍 MCP Server 的背景与作用,然后详述环境准备、VS Code 插件安装、mcp-mongo-server 的安装与配置步骤,最后通过一个简单示例演示如何在 VS Code 中使用该 MCP Server 与 MongoDB Atlas 集群进行交互问答,并给出常见故障及其排查思路。:由 Cline 发布的一个小型命令行服务器,能够将 MongoDB 查询“对话化”地暴露给客户端:专门针对 MongoDB Atlas 集群开发的 MCP Server,支持交互式查询、只读模式等。

2025-04-25 16:19:39 1282

原创 从原生检索到异构图:Native RAG、GraphRAG 与 NodeRAG 架构全景解析

Retrieval-Augmented Generation (RAG) 是将检索到的外部知识与大语言模型 (LLM) 输出相结合的技术。Native RAG(基线 RAG)使用向量索引和相似度检索;GraphRAG则在此基础上引入知识图谱结构,以捕捉实体间关系并指导检索与生成;RAG 效果优化主要包含检索器精炼、索引策略与提示工程等技术;NodeRAG进一步将异构图结构融入 RAG 流程,实现多层次、多类型节点的无缝整合,提升多跳推理能力。以下各节分别阐述它们的框架与组成,并给出 Python 示例。

2025-04-25 14:57:08 1030

原创 MCP Schema:AI智能的“神经触”革命——对比Dify、LangChain揭示下一代集成标准

Dify与LangChain分别代表了当前工具集成的专业化与敏捷化路径,而MCP的协议层创新正在构建下一代集成标准的“神经中枢”。• 协议适配:作为AI模型的“翻译器”,MCP将不同模型的函数调用请求(如GPT的JSON、Claude的XML)转换为标准协议格式。• 动态发现:MCP Server自动解析OpenAPI文档,生成统一格式的Function Schema,无需手动注册。• 对行业:推动形成类似“USB协议”的AI工具标准,加速智能体生态的爆发。

2025-04-25 11:25:24 572

原创 MCP开发实战(一)基于MCP协议的大模型网关——多个大模型API统一封装为标准化工具

相较于传统SSE,新协议支持动态升级HTTP请求为流式传输,简化了端点管理(如用户代码中的。以上方案结合了用户代码与MCP协议的最佳实践,实现了大模型API的统一网关化。关键创新点包括动态模型路由、流式响应增强、混合执行模式等,既遵循协议规范,又扩展了生产级功能需求。基于MCP协议开发大模型网关的核心目标是将多个大模型API统一封装为标准化工具,通过MCP协议实现安全可控的调用。• 多模型代理:每个大模型API封装为独立的MCP Tool(如。• 流量控制:在MCP Server层实现请求限速与配额管理。

2025-04-24 14:35:22 705

原创 基于 MCP用 Python 搭建 “大模型网关”在 MCP 服务器端聚合多个大模型的 API,将其统一为 MCP 协议接口

建议使用定义请求/响应结构。

2025-04-24 11:11:43 331

原创 基于LangChain的RAG召回率增强技术实现:智能分块策略实现、多路召回与重排序实现、异构数据溯源与关联实现

基于LangChain的RAG召回率增强技术实现。

2025-04-23 19:20:38 747

原创 通过智能分块策略、动态分块、多路召回与重排序融合、异构数据关联与溯源提升Ragflow与LangChain提升RAG的召回率

在大模型AI应用中,召回率(Recall) 指模型从所有相关文档中正确检索到的比例。例如,若知识库中有100篇相关文档,系统检索到80篇,则召回率为80%。• 重排序(Re-Ranking):使用深度学习模型(如BAAI/bge-reranker)对召回结果二次排序,提升头部结果质量。• 策略组合:结合关键词匹配(如BM25)与语义向量检索(如Embedding),兼顾精确关键词与语义相似性。在RAG(检索增强生成)场景中,高召回率意味着更少的“漏检”,但可能伴随更多不相关结果(需结合精确率平衡)。

2025-04-23 19:16:31 578

原创 Ragflow、Dify、FastGPT、COZE核心差异对比与Ragflow的深度文档理解能力​​和​​全流程优化设计

• Ragflow支持20+文档格式解析(含OCR识别),通过智能分块和页面排名(PageRank)优化检索精准度,减少幻觉率高达35%。• FastGPT:开源知识库问答系统,核心能力是知识库训练与混合检索(向量+全文),提供可视化Flow模块简化复杂问答场景的搭建。| Ragflow | 技术团队/需高精度知识库的企业 | 法律合同解析、医疗报告分析、多模态数据问答 |• 优先Ragflow:需处理扫描件/表格等复杂数据,或对答案准确性要求极高的场景(如医疗、法律)。

2025-04-23 16:43:43 1208

原创 langchain的LangGraph开发与图数据库应用指南 (结合LangGraph框架与图数据库技术构建智能系统的实践解析)——基于多源信息整合与真实场景案例

其核心思想是将工作流抽象为节点(Nodes)与边(Edges)的图结构,实现复杂任务的动态调度与状态管理。图数据库(如Neo4j、Nebula)以节点-关系-属性模型存储数据,适用于复杂关系场景(如社交网络、推荐系统)。图数据库通过遍历算法(如BFS、DFS)加速关联查询,对比关系型数据库,路径查询效率提升10倍以上。• 客服系统:路由节点根据用户问题类型调用知识图谱(Neo4j)或生成模型(LLM)• 索引优化:为图数据库的高频查询字段(如实体名称)建立索引。三、LangGraph与图数据库的集成开发。

2025-04-23 16:35:29 662

原创 基于Python将MongoDB文本数据通过text2vec-large-chinese模型向量化并存储到Milvus数据库的完整实现方案

通过上述方案,可实现MongoDB文本数据向Milvus的高效迁移。如需处理超大规模数据(百万级以上),建议采用Milvus的Bulk Insert功能直接导入预处理好的Parquet文件。• GPU加速:启用CUDA加速模型推理(需NVIDIA GPU环境)。以下是基于Python将MongoDB文本数据通过。• 元数据过滤:在Milvus搜索时添加。一、实现流程与代码解析。• 若使用其他模型(如。值(例如768维)。

2025-04-23 12:23:19 730

原创 基于LangChain与Neo4j构建企业关系图谱的金融风控实施方案,结合工商数据、供应链记录及舆情数据,实现隐性关联识别与动态风险评估

• 自然语言生成:使用LangChain的LLM模块(如GPT-4)将结构化数据转化为自然语言描述,生成PDF/HTML格式报告。通过上述方案,金融机构可构建智能化的企业关系图谱风控平台,实现从数据整合到风险决策的全链路自动化,有效提升风控效率与准确性。• 基于PageRank算法评估风险扩散强度,例如某供应链核心企业涉诉时,自动标记其上下游企业的风险等级。• 数据注入:通过Neo4j实时查询,关联企业节点的行政处罚、司法纠纷、供应链稳定性等数据;• 企业节点:属性包含注册资本、行业分类、注册地等;

2025-04-21 19:51:32 1369

原创 LangChain与图数据库Neo4j LLMGraphTransformer融合:医疗辅助诊断、金融风控领域垂直领域、法律咨询场景问答系统的技术实践

LangChain通过集成图数据库与知识图谱,构建了一种新型的GraphRAG架构,结合结构化关系与非结构化语义的优势,实现更精准的领域知识问答。注:LLM自动识别领域实体(如医疗中的疾病、基因、药物),并建立ISO/TS 20440标准的关系模型。• GraphRAG:通过知识图谱的图遍历能力,实现关系链式检索(如:药品→作用机制→靶点→副作用)• 图数据库选择:Neo4j(商业版)、Apache AGE(开源)或PolarDB(云原生)组件区分同名概念(如"苹果(水果)" vs “苹果(公司)”)

2025-04-21 15:28:37 1039

原创 LangChain实现PDF中图表文本多模态数据向量化及RAG应用实战指南

在大模型应用中,PDF文档因包含文本、表格、图片等异构数据,成为RAG(检索增强生成)系统的核心挑战。本文基于LangChain框架,结合多模态处理技术,详解PDF多类型数据的向量化及RAG应用构建全流程。通过上述方案,开发者可构建支持PDF多模态数据的工业级RAG系统。• 分块优化:对技术文档采用非对称重叠策略(前向10%/后向20%),避免核心概念截断。• 图片数据实施两阶段检索:先文本描述匹配,再图像特征比对。• 方案一:使用CLIP等多模态嵌入模型直接向量化图片。• 嵌入模型选择:推荐。

2025-04-21 15:20:19 662 1

原创 AIWS全链路开发与MCP框架下的高可用服务架构设计

例如,在金融风控场景中,需依次执行用户身份验证、信用评分、反欺诈检测等子任务,并通过容错机制(如熔断、降级)保障流程健壮性。用户交互是AIWS的起点,需结合自然语言处理(NLP)、多模态输入(语音、图像)等技术,构建直观且响应灵敏的交互界面。• 服务拆分与自治:按业务域划分微服务(如用户管理、支付服务),每个服务独立开发、部署,通过API网关(如Spring Cloud Gateway)统一暴露接口。• 自动化监控与恢复:构建全链路监控体系,采集QPS、延迟、错误率等指标,通过ELK栈实现日志聚合分析。

2025-04-21 12:25:05 486

原创 用ComfyUI工作流实现AI艺术字体批量设计与文生图模型的文字生成现状分析

采用ChatGLM-6B作为文本编码器,结合合成数据(千万级汉字图文对)与真实OCR数据,使“复古雕刻”“金镶玉”等复杂描述的生成准确率提升40%。• 英文与符号:以Stable Diffusion 1.5为代表的基础模型,仅能生成模糊的字母轮廓(如“Sora”可能显示为“$0r@”)。• 风格微调:通过调整Lora强度(0.5-0.7)和ControlNet权重(0.5以下),平衡文字清晰度与艺术效果,避免“炸图”。二、文生图模型中的文字生成:从“乱码”到“可读”的进化。

2025-04-21 11:30:10 534

原创 免费文生成图(Text-to-Image)API —— StableDiffusionAPI.com、Hugging Face Inference API、Replicat

本文将介绍六种主流且对开发者友好的免费文本生成图像(Text-to-Image)API —— StableDiffusionAPI.com、Hugging Face Inference API、Replicate、Craiyon、Segmind 及 DeepAI,并为每种服务提供可直接使用的 Python 调用示例,帮助你在项目中快速集成高质量 AI 绘图功能。DeepAI 提供文本生成图像的免费 API,基于 Stable Diffusion。调用方式如下: citeturn0search12。

2025-04-21 10:06:22 432

原创 2025年室内设计AI工具对比指南:10款官网横评与深度解析

随着技术迭代,未来的室内设计将更智能、更个性化,而选择一款高效的工具,无疑是抢占先机的关键。在AI技术飞速发展的今天,室内设计领域涌现出众多智能工具,帮助用户快速生成方案、优化空间布局甚至实现虚拟体验。本文精选10款主流平台,从功能、定价、适用场景等维度进行对比,助您找到最适合的设计助手。• 自动化合规:AidMaster图灵的施工图审查功能,预示AI将深度参与工程标准化流程。• 供应链整合:Collov AI等平台通过AI推荐家具,直接链接电商购买,形成闭环。

2025-04-19 15:55:29 1349

原创 Stable Diffusion秋叶整合包V4独立版Python本地API连接指南

秋叶整合的Stable Diffusion V4独立版支持通过Python调用本地API实现自动化图像生成。• 硬件适配:NVIDIA显卡建议安装CUDA 11.8+驱动,40系显卡启用FP8优化。通过上述方法,可高效实现秋叶整合包的本地API调用。:正向提示词(需英文,可用逗号分隔多个关键词):随机种子(-1为随机,固定数值可复现结果)• 启用xFormers加速:启动参数添加。• 降低生成分辨率(如512×512)。• 点击“一键启动”,待控制台显示。:提示词相关性(7-12为常用范围)

2025-04-19 12:08:28 929

原创 基于n8n的AI应用工作流原理与技术解析

或直接调用REST API集成新服务,这种设计使n8n能快速适配各类AI接口。

2025-04-18 20:19:45 1082

原创 金融垂直领域大模型应用人员组织架构流程图

以下是为您设计的采购Dify工作流大模型应用组织架构流程图,结合采购流程核心要素与大模型项目特点构建:战略规划与资源调配需求整合与流程标准化数据接口对接算法需求传递金融AI问答开发进度协调图表问答展示策略数据对接接口开发接口开发算法优化反馈大模型能力数据接口市场信号输入资金和行业趋势分析老板/决策层大语言模型应用开发平台类dify 得帆云工作流中台框架类langchain节点编排项目管理。

2025-04-18 20:11:42 573

原创 针对分块导致语义切割的调整方案模型微调实战指南与优化方案

分块优化需平衡语义完整性与检索效率,微调需聚焦高质量数据与参数调优,两者结合可覆盖更多场景。工具选择需结合文本类型(结构化/非结构化)和计算资源。

2025-04-18 15:14:03 517

原创 基于Python的MCP Server技术解析:从AI代理到实时数据处理的智能化实践

从LangChain的跨工具协作到Redis的毫秒级响应,Python MCP Server正在重塑AI与真实世界的交互方式。自动工具发现:通过LLM动态生成工具描述,减少人工标注成本。联邦学习集成:在MCP层实现隐私保护下的多代理协作。边缘计算适配:优化资源占用,支持IoT设备端部署。通过持续的技术迭代,MCP协议有望成为AI代理与物理世界的“标准通信语言”,推动智能化应用进入全新阶段。

2025-04-18 15:02:11 1033

原创 大模型微服务架构模块实现方案,基于LLaMA Factory和Nebius Cloud实现模型精调的标准流程及代码

以上方案可根据实际业务需求进行组合使用,建议中小团队优先采用Nebius Cloud快速验证业务假设,待模型稳定后再迁移至本地部署方案。

2025-04-18 12:28:38 407

原创 大模型微服务架构模块实现方案

说白了就是[模型调用端口]进去:1. 出现一个基于gradio/streamlit或者随便什么快速的前端窗口出来给人工测试 2. 设置几个我们手搓的优劣标准(之后开会决定)然后出现几个分数。该实现方案综合运用了PyTorch的数据处理能力、Flask的API开发效率和Gradio的快速原型开发特性,符合微服务架构的最佳实践。这里写一个统计模块可视化一下数据长度,优劣分布,需要人工介入的位置分布。总结:这个交付物三个:1. dataset class 2. flast api 3. 可视化方程。

2025-04-18 12:01:23 936

原创 MCP Server驱动传统SaaS智能化转型:从工具堆叠到AI Agent生态重构,基于2025年技术演进与产业实践

这场由MCP Server驱动的变革,正将传统SaaS从"数字化工具"转化为"企业智能体生态"的基石。这种转型本质是将SaaS的工作流引擎升级为"认知自动化中枢",如Dify工作流平台通过嵌套MCP节点,实现传统审批流与AI决策流的有机融合。• 阿里云知识引擎的Agent模式允许大模型自主分解任务,如将"客户投诉处理"拆解为"订单查询→日志分析→补偿方案生成"的链式调用;这种变革使传统SaaS从"功能提供者"进化为"智能体协作节点",正如腾讯云将位置服务API转化为"空间计算智能体"的基础设施。

2025-04-18 11:51:49 1156

基金指标数据 夏普比率 特雷诺指数 詹森指数 M2测度 信息比率 索提诺比率 半方差调整 Stutzer 指数 卡玛比率 横截面

基金名称 SECURITY_ID_x 开始时间 开始时间_Rank 开始时间_Percentile 结束时间 结束时间_Rank 结束时间_Percentile 样本期的绝对收益率 样本期的绝对收益率_Rank 样本期的绝对收益率_Percentile 样本期的年化收益率 样本期的年化收益率_Rank 样本期的年化收益率_Percentile 样本期的最大回撤 样本期的最大回撤_Rank 样本期的最大回撤_Percentile 样本期年化波动率 样本期年化波动率_Rank 样本期年化波动率_Percentile 样本期间年化夏普 样本期间年化夏普_Rank 样本期间年化夏普_Percentile 样本期卡玛比率 样本期卡玛比率_Rank 样本期卡玛比率_Percentile 样本期下行波动率 样本期下行波动率_Rank 样本期下行波动率_Percentile 样本期累计超额收益率 样本期累计超额收益率_Rank 样本期累计超额收益率_Percentile 样本期年化超额收益 样本期年化超额收益_Rank 样本期年化超额收益_Percentile 样本期超额最大回撤 样本期超额最大回撤

2024-09-23

一款headers cookies payload parms formdata文本转化字典的工具,html格式化,JSON格式

在开发过程中,特别是在处理网络请求和爬虫任务时,经常需要将浏览器中的headers、cookies、payload、params、form data等文本格式转化为字典(Dictionary)形式,以便于编程语言的处理和操作。同时,HTML和JSON格式的格式化显示也对于调试和展示数据非常有帮助。以下是一个关于如何将这些文本转化为字典以及HTML和JSON格式化的工具描述。 1. 文本转化为字典的工具 对于headers、cookies等文本转化为字典的工具,通常会依赖于编程语言提供的库或自定义函数来实现。以下以Python为例,说明如何实现这一过程。 2. HTML格式化工具 HTML格式化工具通常用于美化HTML代码,使其更易于阅读。这类工具可以是浏览器插件、在线服务或编程语言库。例如,在Python中,可以使用prettify_html库或BeautifulSoup库来格式化HTML代码。 3. JSON格式化工具 JSON格式化工具用于将JSON数据转换为易读的格式,通常包括缩进和颜色编码等特性。这类工具同样可以是浏览器插件、在线服务或编程语言库。

2024-09-19

elasticsearch-8.8.1-windows-x86-64.zip

es最新支持向量数据库查询的版本

2023-07-29

中文版Fiddler5.0__5星资源.zip

之前都能正常抓包小程序的内容,今天突然抓包失败。发现小程序进程的名字从WechatApp.exe变成了WechatAppex.exe,所以不能抓包了。经过研究,是PC微信小程序升级了,使用了不同的架构。fiddler也无法获取到参数信息了。 临时解决方案: 打开一个任意小程序,打开任务管理器,找到进程。右键打开文件位置。 需要在C:\Users\admin\AppData\Roaming\Tencent\WeChat\XPlugin\Plugins\WMPFRuntime 微信小程序插件目录,删除WMPFRuntime下所有的4376文件夹。重启PC微信,重新开始抓包即可。最新版本的微信WeChatSetup3.7,删除WMPFRuntime下所有的4376文件夹。WeChatSetup3.6.0下载,Flidder小程序抓包。

2022-09-12

WeChatSetup3.6.0下载,Flidder小程序抓包

之前都能正常抓包小程序的内容,今天突然抓包失败。发现小程序进程的名字从WechatApp.exe变成了WechatAppex.exe,所以不能抓包了。经过研究,是PC微信小程序升级了,使用了不同的架构。fiddler也无法获取到参数信息了。 临时解决方案: 打开一个任意小程序,打开任务管理器,找到进程。右键打开文件位置。 需要在C:\Users\admin\AppData\Roaming\Tencent\WeChat\XPlugin\Plugins\WMPFRuntime 微信小程序插件目录,删除WMPFRuntime下所有的4376文件夹。重启PC微信,重新开始抓包即可。最新版本的微信WeChatSetup3.7,删除WMPFRuntime下所有的4376文件夹。WeChatSetup3.6.0下载,Flidder小程序抓包。

2022-08-31

Python自然语言处理的textrank文本分析,循环绘制分院各教授研究方向和兴趣的词云图.zip

(粉丝可下载)为了研究某分院教师的学术成果、研究兴趣、研究方向,我们以广西师范大学的两个分院教师在知网所发表论文的摘要数据分析学术成果、关键词数据分析研究方向、研究方向文本数据分析研究方向,具体用textrank算法计算出研究方向词权重,根据词权重绘制词云图进行文本分析。具体绘制教师论文摘要数据权重最高的40个词的词云图,并输出各教师的基本信息,根据结果我们发现各教授的基本信息与词云图文本高度一致,可见分词的效果非常好,可以分析出各分院教师的学术成果、研究兴趣、研究方向。

2021-03-12

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除