以下是基于LLaMA Factory和Nebius Cloud实现模型精调的标准流程及代码示例,结合最新技术动态和行业实践整理:
一、LLaMA Factory本地部署方案
1. 环境配置
# 创建Python环境并安装依赖
conda create -n llama_factory python=3.10
conda activate llama_factory
git clone https://github.com/hiyouga/LLaMA-Factory
cd LLaMA-Factory
pip install -e ".[torch,metrics,gptq]" # 支持量化训练
2. 数据准备
采用Alpaca格式的JSON数据集:
[
{
"instruction": "生成客服回复",
"input": "用户投诉订单未发货",
"output": "已为您加急处理,预计24小时内发货"
}
]
使用脚本转换数据集格式:
from datasets import load_dataset
dataset = load_dataset("csv", data_files="customer_service.csv")
dataset.map(lambda x: {"text": f"Instruction: {x['question']}\nResponse: {x['answer']}"})
dataset.save_to_disk("formatted_data") # 网页3
3. 训练配置
通过Python API启动训练:
from llamafactory import Trainer
trainer = Trainer(
model_name_or_path="Qwen/Qwen2.5-7B-Instruct",
train_data="formatted_data",
finetuning_type="lora",
lora_target="all",
output_dir="./output",
per_device_train_batch_size=4,
gradient_accumulation_steps=8,
learning_rate=2e-5,
fp16=True # 网页5
)
trainer.train()
4. 模型导出与部署
# 合并LoRA权重
llamafactory-cli export --model_name_or_path ./output --output_dir ./merged_model
# 部署到Ollama
ollama create my_model -f ./merged_model/Modelfile
ollama run my_model # 网页3]
二、Nebius Cloud云端方案
1. API设置
import os
from openai import OpenAI
client = OpenAI(
base_url="https://api.studio.nebius.com/v1/",
api_key=os.getenv("Nebius_API_KEY")
)
2. 数据集上传
training_file = client.files.create(
file=open("training_data.jsonl", "rb"),
purpose="fine-tune"
)
validation_file = client.files.create(
file=open("validation_data.jsonl", "rb"),
purpose="fine-tune" # 网页6
)
3. 创建微调作业
job = client.fine_tuning.jobs.create(
model="meta-llama/llama-3.1-8b-instruct",
training_file=training_file.id,
validation_file=validation_file.id,
hyperparameters={
"n_epochs": 3,
"lora": True,
"lora_r": 32,
"lora_alpha": 64
}
) # 网页6]
4. 模型部署
# 获取部署端点
deployment = client.deployments.create(
model=job.fine_tuned_model,
instance_type="gpu-a10g",
scaling_config={"min_replicas": 1}
)
print(f"Endpoint: {deployment.endpoint_url}")
三、方案对比
维度 | LLaMA Factory | Nebius Cloud |
---|---|---|
部署方式 | 本地/私有化部署 | 全托管云服务 |
硬件成本 | 需自备GPU(推荐RTX 4090 24GB) | 按需付费($0.15/百万token) |
最大模型支持 | 支持70B参数模型 | 最高支持720B参数模型 |
开发灵活性 | 支持自定义训练脚本 | 标准化API接口 |
适用场景 | 敏感数据/定制化需求 | 快速上线/弹性扩展 |
四、最新技术动态
- 混合推理模型:Gemini 2.5 Flash支持动态调整思考预算,关闭推理模式成本降低600%(输入$0.15/M,输出$0.6/M)
- 量化训练:LLaMA Factory新增GPTQ 4bit量化支持,显存占用降低70%
- 多模态支持:Nebius最新集群配备NVIDIA H200 GPU,支持万卡级并行训练
五、最佳实践建议
- 数据预处理:使用正则表达式过滤敏感信息
import re
text = re.sub(r"(?i)密码|机密", "[REDACTED]", raw_text) # 网页1
- 超参优化:采用贝叶斯搜索寻找最优组合
from ax import optimize
best_parameters, best_values = optimize(
parameters=[
{"name": "lr", "type": "range", "bounds": [1e-6, 1e-4]},
{"name": "batch_size", "type": "range", "bounds": [4, 32]}
],
evaluation_function=train_eval_func # 自定义评估函数
) # 网页5
- 监控体系:集成Prometheus监控训练指标
# prometheus.yml
scrape_configs:
- job_name: 'llm_train'
static_configs:
- targets: ['localhost:8000']
以上方案可根据实际业务需求进行组合使用,建议中小团队优先采用Nebius Cloud快速验证业务假设,待模型稳定后再迁移至本地部署方案。