Hotelling模型基础【五】—二次交通成本模型2

(二)二次交通成本

2.商店位置不确定:

问题描述:

有一个长度为1的线性城市(归一化:设整个市场为1),两家企业位于城市两段,即 x = 0 x=0 x=0 x = 1 x=1 x=1处,消费者均匀地分布在城市区间 [ 0 , 1 ] \left[ 0,1 \right] [0,1]内,单位生产成本为 c c c,单位交通成本 t t t,那么两家企业该如何定价,最优利润是多少?在这里插入图片描述

模型求解过程:

第一步,求解无差异点:

设商店A的产品定价为 p 1 p_1 p1,商店B的产品定价为 p 2 p_2 p2,在无差异点上可得以下等式:
p 1 + t ( x − a ) 2 = p 2 + t ( b − x ) 2 p_1+t\left( x-a \right) ^2=p_2+t\left( b-x \right) ^2 p1+t(xa)2=p2+t(bx)2
在无差异点上,消费者花费 p 1 p_1 p1购买成本加上到达商店A所花费的交通成本与消费者花费 p 2 p_2 p2购买成本加上到达商店B所花费的交通成本是相等的。
求解得:
x = 1 2 ( a + b + p 1 − p 2 a t − b t ) x=\frac{1}{2}\left( a+b+\frac{p_1-p_2}{at-bt} \right) x=21(a+b+atbtp1p2)
MATHEMATICA代码:在这里插入图片描述

第二步,确定需求函数和利润函数:

由于在x点左边的消费者,都仅会去企业1购买产品,则企业A的需求量$Q_1=x ,同理,企业 2 的需求量为 ,同理,企业2的需求量为 ,同理,企业2的需求量为Q_2=1-x $。
即需求函数为:
Q 1 = x = 1 2 ( a + b + p 1 − p 2 a t − b t ) Q_1=x=\frac{1}{2}\left( a+b+\frac{p_1-p_2}{at-bt} \right) Q1=x=21(a+b+atbtp1p2)
Q 2 = 1 − x = 1 − 1 2 ( a + b + p 1 − p 2 a t − b t ) Q_2=1-x=1-\frac{1}{2}\left( a+b+\frac{p_1-p_2}{at-bt} \right) Q2=1x=121(a+b+atbtp1p2)
MATHEMATICA代码:
在这里插入图片描述
那么两家商店的利润函数为:
A:$\pi _1=\left( p_1-c \right) Q_1 $
B:$\pi _2=\left( p_2-c \right) Q_2 $
MATHEMATICA代码:
在这里插入图片描述

第三步,求解最优价格:

令利润函数的导数等于零求解价格p的最大值:
∂ π 1 ∂ p 1 = 0 \frac{\partial \pi _1}{\partial p_1}=0 p1π1=0, ∂ π 2 ∂ p 2 = 0 \frac{\partial \pi _2}{\partial p_2}=0 p2π2=0
解得:
p 1 = 1 2 ( c + p 2 − a 2 t + b 2 t ) p_1=\frac{1}{2}\left( c+p_2-a^2t+b^2t \right) p1=21(c+p2a2t+b2t)
p 2 = 1 2 [ c + p 1 + ( a − b ) ( − 2 + a + b ) t ] p_2=\frac{1}{2}\left[ c+p_1+\left( a-b \right) \left( -2+a+b \right) t \right] p2=21[c+p1+(ab)(2+a+b)t]
MATHEMATICA代码:
在这里插入图片描述
联立 p 1 p_1 p1 p 2 p_2 p2方程式,解出 p 1 ∗ p_1^* p1 p 2 ∗ p_2^* p2的值:
p 1 ∗ = 1 3 ( 3 c − 2 a t − a 2 t + 2 b t + b 2 t ) p_1^*=\frac{1}{3}\text{(}3c-2at-a^2t+2bt+b^2t\text{)} p1=313c2ata2t+2bt+b2t
p 2 ∗ = 1 3 ( 3 c − 4 a t + a 2 t + 4 b t − b 2 t ) p_2^*=\frac{1}{3}\text{(}3c-4at+a^2t+4bt-b^2t\text{)} p2=313c4at+a2t+4btb2t
MATHEMATICA代码:在这里插入图片描述

第四步,求解最优利润:

p 1 ∗ p_1^* p1 p 2 ∗ p_2^* p2代入到利润 π 1 \pi _1 π1 π 2 \pi _2 π2中,求出最优利润:
π 1 ∗ = − 1 18 ( a − b ) ( 2 + a + b ) 2 t \pi _1^*=-\frac{1}{18}\left( a-b \right) \left( 2+a+b \right) ^2t π1=181(ab)(2+a+b)2t
π 1 ∗ = − 1 18 ( a − b ) ( − 4 + a + b ) 2 t \pi _1^*=-\frac{1}{18}\left( a-b \right) \left( -4+a+b \right) ^2t π1=181(ab)(4+a+b)2t
MATHEMATICA代码:
在这里插入图片描述

第五步,求利润函数对位置参数的偏导:

企业的利润函数 π 1 ∗ \pi _{1}^{*} π1 π 2 ∗ \pi _{2}^{*} π2 对位置参数 a a a b b b 的偏导数为:
∂ π 1 ∗ ∂ a = − 1 18 ( 2 + 3 a − b ) ( 2 + a + b ) t < 0 \frac{\partial \pi _1^*}{\partial a}=-\frac{1}{18}\left( 2+3a-b \right) \left( 2+a+b \right) t<0 aπ1=181(2+3ab)(2+a+b)t<0
∂ π 2 ∗ ∂ a = − 1 18 ( 4 + a − 3 b ) ( − 4 + a + b ) t > 0 \frac{\partial \pi _2^*}{\partial a}=-\frac{1}{18}\left( 4+a-3b \right) \left( -4+a+b \right) t>0 aπ2=181(4+a3b)(4+a+b)t>0
MATHEMATICA代码:
在这里插入图片描述

因此:
企业A的利润 π 1 ∗ \pi _{1}^{*} π1 a a a 增加而下降( ∂ π 1 ∗ ∂ a < 0 \frac{\partial \pi _{1}^{*}}{\partial a}<0 aπ1<0):企业A越向左移动( a ↓ a\downarrow a),越能抢占更多市场份额。
企业B的利润 π 2 ∗ \pi _{2}^{*} π2 b b b 增加而上升( ∂ π 2 ∗ ∂ b > 0 \frac{\partial \pi _{2}^{*}}{\partial b}>0 bπ2>0):企业B越向右移动( b ↑ b\uparrow b),越能避免被企业A挤压。

企业位置的动态调整:

企业A希望 a a a 尽可能小(向左靠拢),企业B希望 b b b 尽可能大,向右靠拢。那么此时,若 a = 0 , b = 1 a=0\text{,}b=1 a=0b=1,即A、B的位置分别位于线性城市的两端,两企业的利润达到最大。

第六步,均衡位置的求解:

使用MATHEMATICA绘制企业A和企业B的利润随选址变化的图像:
MATHEMATICA代码:
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值