(二)二次交通成本
2.商店位置不确定:
问题描述:
有一个长度为1的线性城市(归一化:设整个市场为1),两家企业位于城市两段,即
x
=
0
x=0
x=0和
x
=
1
x=1
x=1处,消费者均匀地分布在城市区间
[
0
,
1
]
\left[ 0,1 \right]
[0,1]内,单位生产成本为
c
c
c,单位交通成本
t
t
t,那么两家企业该如何定价,最优利润是多少?
模型求解过程:
第一步,求解无差异点:
设商店A的产品定价为
p
1
p_1
p1,商店B的产品定价为
p
2
p_2
p2,在无差异点上可得以下等式:
p
1
+
t
(
x
−
a
)
2
=
p
2
+
t
(
b
−
x
)
2
p_1+t\left( x-a \right) ^2=p_2+t\left( b-x \right) ^2
p1+t(x−a)2=p2+t(b−x)2
在无差异点上,消费者花费
p
1
p_1
p1购买成本加上到达商店A所花费的交通成本与消费者花费
p
2
p_2
p2购买成本加上到达商店B所花费的交通成本是相等的。
求解得:
x
=
1
2
(
a
+
b
+
p
1
−
p
2
a
t
−
b
t
)
x=\frac{1}{2}\left( a+b+\frac{p_1-p_2}{at-bt} \right)
x=21(a+b+at−btp1−p2)
MATHEMATICA代码:
第二步,确定需求函数和利润函数:
由于在x点左边的消费者,都仅会去企业1购买产品,则企业A的需求量$Q_1=x
,同理,企业
2
的需求量为
,同理,企业2的需求量为
,同理,企业2的需求量为Q_2=1-x $。
即需求函数为:
Q
1
=
x
=
1
2
(
a
+
b
+
p
1
−
p
2
a
t
−
b
t
)
Q_1=x=\frac{1}{2}\left( a+b+\frac{p_1-p_2}{at-bt} \right)
Q1=x=21(a+b+at−btp1−p2)
Q
2
=
1
−
x
=
1
−
1
2
(
a
+
b
+
p
1
−
p
2
a
t
−
b
t
)
Q_2=1-x=1-\frac{1}{2}\left( a+b+\frac{p_1-p_2}{at-bt} \right)
Q2=1−x=1−21(a+b+at−btp1−p2)
MATHEMATICA代码:
那么两家商店的利润函数为:
A:$\pi _1=\left( p_1-c \right) Q_1 $
B:$\pi _2=\left( p_2-c \right) Q_2 $
MATHEMATICA代码:
第三步,求解最优价格:
令利润函数的导数等于零求解价格p的最大值:
∂
π
1
∂
p
1
=
0
\frac{\partial \pi _1}{\partial p_1}=0
∂p1∂π1=0,
∂
π
2
∂
p
2
=
0
\frac{\partial \pi _2}{\partial p_2}=0
∂p2∂π2=0。
解得:
p
1
=
1
2
(
c
+
p
2
−
a
2
t
+
b
2
t
)
p_1=\frac{1}{2}\left( c+p_2-a^2t+b^2t \right)
p1=21(c+p2−a2t+b2t)
p
2
=
1
2
[
c
+
p
1
+
(
a
−
b
)
(
−
2
+
a
+
b
)
t
]
p_2=\frac{1}{2}\left[ c+p_1+\left( a-b \right) \left( -2+a+b \right) t \right]
p2=21[c+p1+(a−b)(−2+a+b)t]
MATHEMATICA代码:
联立
p
1
p_1
p1和
p
2
p_2
p2方程式,解出
p
1
∗
p_1^*
p1∗和
p
2
∗
p_2^*
p2∗的值:
p
1
∗
=
1
3
(
3
c
−
2
a
t
−
a
2
t
+
2
b
t
+
b
2
t
)
p_1^*=\frac{1}{3}\text{(}3c-2at-a^2t+2bt+b^2t\text{)}
p1∗=31(3c−2at−a2t+2bt+b2t)
p
2
∗
=
1
3
(
3
c
−
4
a
t
+
a
2
t
+
4
b
t
−
b
2
t
)
p_2^*=\frac{1}{3}\text{(}3c-4at+a^2t+4bt-b^2t\text{)}
p2∗=31(3c−4at+a2t+4bt−b2t)
MATHEMATICA代码:
第四步,求解最优利润:
把
p
1
∗
p_1^*
p1∗、
p
2
∗
p_2^*
p2∗代入到利润
π
1
\pi _1
π1和
π
2
\pi _2
π2中,求出最优利润:
π
1
∗
=
−
1
18
(
a
−
b
)
(
2
+
a
+
b
)
2
t
\pi _1^*=-\frac{1}{18}\left( a-b \right) \left( 2+a+b \right) ^2t
π1∗=−181(a−b)(2+a+b)2t
π
1
∗
=
−
1
18
(
a
−
b
)
(
−
4
+
a
+
b
)
2
t
\pi _1^*=-\frac{1}{18}\left( a-b \right) \left( -4+a+b \right) ^2t
π1∗=−181(a−b)(−4+a+b)2t
MATHEMATICA代码:
第五步,求利润函数对位置参数的偏导:
企业的利润函数
π
1
∗
\pi _{1}^{*}
π1∗ 和
π
2
∗
\pi _{2}^{*}
π2∗ 对位置参数
a
a
a 和
b
b
b 的偏导数为:
∂
π
1
∗
∂
a
=
−
1
18
(
2
+
3
a
−
b
)
(
2
+
a
+
b
)
t
<
0
\frac{\partial \pi _1^*}{\partial a}=-\frac{1}{18}\left( 2+3a-b \right) \left( 2+a+b \right) t<0
∂a∂π1∗=−181(2+3a−b)(2+a+b)t<0
∂
π
2
∗
∂
a
=
−
1
18
(
4
+
a
−
3
b
)
(
−
4
+
a
+
b
)
t
>
0
\frac{\partial \pi _2^*}{\partial a}=-\frac{1}{18}\left( 4+a-3b \right) \left( -4+a+b \right) t>0
∂a∂π2∗=−181(4+a−3b)(−4+a+b)t>0
MATHEMATICA代码:
因此:
企业A的利润
π
1
∗
\pi _{1}^{*}
π1∗随
a
a
a 增加而下降(
∂
π
1
∗
∂
a
<
0
\frac{\partial \pi _{1}^{*}}{\partial a}<0
∂a∂π1∗<0):企业A越向左移动(
a
↓
a\downarrow
a↓),越能抢占更多市场份额。
企业B的利润
π
2
∗
\pi _{2}^{*}
π2∗随
b
b
b 增加而上升(
∂
π
2
∗
∂
b
>
0
\frac{\partial \pi _{2}^{*}}{\partial b}>0
∂b∂π2∗>0):企业B越向右移动(
b
↑
b\uparrow
b↑),越能避免被企业A挤压。
企业位置的动态调整:
企业A希望 a a a 尽可能小(向左靠拢),企业B希望 b b b 尽可能大,向右靠拢。那么此时,若 a = 0 , b = 1 a=0\text{,}b=1 a=0,b=1,即A、B的位置分别位于线性城市的两端,两企业的利润达到最大。
第六步,均衡位置的求解:
使用MATHEMATICA绘制企业A和企业B的利润随选址变化的图像:
MATHEMATICA代码: