动态规划法(总述)多阶段决策最优化问题

动态规划是一种解决最优化问题的方法,通过划分子问题并寻找递推关系来求解。文章介绍了动态规划在数塔问题、多段图最短路径、多源点最短路径(Floyd算法)、旅行商问题(TSP)、最长递增子序列、最长公共子序列、0/1背包问题、最优二叉查找树以及近似字符串匹配等组合问题中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

动态规划: 研究最优控制问题提出的
该问题有n个输入,问题的解由这n个输入组成,这个子集必须满足事先给定的条件,这些条件称为约束条件,满足约束条件的可行解可能不只有一个为了衡量可行解的优劣,通常以一些函数的形式,这些标准函数是目标函数,使得目标函数取得极大值极小值的解称为最优解,最优化问题
多阶段决策过程满足最优性原理,在多阶段决策中,各个子问题解只于它前面的子问题相关,而且各个子问题解都是相对于当前状态的最优解,整个问题的最优解是各个子问题的最优解构成的。

6.1.2动态规划问题的设计思想
1划分子问题
将原问题分解为若干个子问题,每一个子问题对应一个决策阶段,并且子问题之间具有重叠关系
2.确定动态规划函数
根据子问题之间的重叠关系找到满足的递推关系式(动态规划函数)
3.填写表格
设计表格,以自底向上的方式计算各个子问题的解并填写表格,实现动态规划过程。

6.1.3简单的例子—数塔问题
6.2图问题的动态规划法
6.2.1多段图的最短路径问题
6.2.2多源点的最短路径问题 Floyd算法(典型的动态规划算法)
6.2.3TSP问题
6.3组合问题中的动态规划法
6.3.1最长递增子序列问题6
6.3.2最长公共子序列问题
6.3.3 0/1背包问题
6.4查找问题的动态规划法
6.4.1最优二叉查找树问题
6.4.2近似串皮皮匹配问题

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值