Numpy数组排序问题

在进行python数据分析的时候,使用Numpy对csv文件中读取到的数据进行分析,将数据放入数组中,本来打算进行数据从小到大的排列
python

height=Height.sort()
weight=Weight.sort()

plt.plot(height,weight,label='模拟数据')
plt.xlabel('Weight')
plt.ylabel('Height')
plt.title('演示从文件加载数据')
plt.legend()
plt.show()

因为数组使用sort()进行排序,一直会出现下面的错误提示

ValueError: x, y, and format string must not be None

ValueError:x、y和格式字符串不能为无

因为找不到是什么原因,但是换了一个排序:sorted()
之后就可以继续运行了

NumPyPython中用于科学计算的一个重要库,它提供了高性能的多维数组对象以及对这些数组进行操作的函数。NumPy数组排序是对数组元素进行排序的操作,可以按照升序或降序排列。 NumPy提供了多种排序函数,其中最常用的是`np.sort()`函数和`ndarray.sort()`方法。`np.sort()`函数返回一个已排序数组副本,而`ndarray.sort()`方法则直接在原数组上进行排序。 对于结构化数组,它是一种特殊类型的NumPy数组,其中每个元素都可以包含多个字段。结构化数组可以通过定义dtype(数据类型)来创建,每个字段都有一个名称和一个数据类型。 下面是对NumPy数组排序和结构化数组的介绍: 1. NumPy数组排序: - `np.sort()`函数:返回一个已排序数组副本,不改变原数组。 - `ndarray.sort()`方法:直接在原数组上进行排序,不返回副本。 - 可以指定`axis`参数来沿着指定轴进行排序。 - 可以使用`kind`参数指定排序算法,如快速排序('quicksort')、归并排序('mergesort')或堆排序('heapsort')。 - 可以使用`order`参数指定按照某个字段进行排序。 2. 结构化数组: - 结构化数组是一种特殊类型的NumPy数组,每个元素都可以包含多个字段。 - 可以通过定义dtype来创建结构化数组,每个字段都有一个名称和一个数据类型。 - 可以使用`np.dtype()`函数定义dtype,指定字段名称和数据类型。 - 可以通过索引或字段名称访问结构化数组的元素。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值