递推算法的本质
得到前后过程间的数字关系,将复杂问题分解为几个小问题
例一
数塔问题(倒推法)
图片百度的
问题
从顶至底找出一个路径,使其和最大
分析
从上往下推似乎有点麻烦
那么我们想想能不能从下而上(显然这样更好)
我们可以让n-1层的数加上他相邻的n的数中的最大值
如此反复
到最顶上必然是最大。
代码实现
#include<iostream>
#include<string>
#include<string.h>
#include<algorithm>
using namespace std;
int main()
{
int n, i, j, a[101][101];
cin >> n;
for (i = 1; i <= n; i++)
for (j = 1; j <= i; j++)
cin >> a[i][j];
for(i=n-1;i>=1;i--)
for (j = 1; j <= i; j++)
{
if (a[i + 1][j] >= a[i + 1][j + 1])
a[i][j] += a[i + 1][j];
else
a[i][j] += a[i + 1][j + 1];
}
cout << a[1][1] << endl;
return 0;
}
例二
Fioonacci数列的非递归实现(1,1,2,3,5…)
分析
观察数列 我们得出递推式f(n)=f(n-1)+f(n-2)
#include<iostream>
#include<string>
#include<string.h>
#include<algorithm>
using namespace std;
int main()
{
int f0 = 1, f1 = 1, f2=2;
int n;
cin >> n;
for (int i = 3; i <= n; ++i)
{
f2 = f0 + f1;
f0 = f2;
f1 = f2;
}
cout << f2;
return 0;
}
同样的类型还有 洛谷 数楼梯
还有经典的蓝桥杯题目 奶牛的递归