动态规划—不相邻取数

这篇博客探讨了如何使用动态规划解决不相邻取数的算法问题。通过建立一个二维数组dp,其中dp[n][0]表示不取当前数的情况,dp[n][1]表示取当前数的情况。博主阐述了状态转移方程:dp[n][0] = Math.max(dp[n-1][0],dp[n-1][1])和dp[n][1] = dp[n-1][0]+arr[n-1],并提供了相关代码实现。" 109737980,9290954,CUDA+Strassen算法实现:矩阵乘法高效加速,"['并行计算', '多线程', 'CUDA', '算法']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目描述

在这里插入图片描述

思路

用一个二维数组dp[n][2]
dp[n][0]代表不取当前的数
dp[n][1]代表取当前的数
不取当前的数,前面的数可取可不取 dp[n][0] = Math.max(dp[n-1][0],dp[n-1][1])
取当前的数,前面的数必不可以取 dp[n][1] = dp[]n-1[0]+arr[n-1]

代码

import java.util.*;
public class Main {
   
 public static void main(String args[])
 {
   
     Scanner scan = new Scanner(
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值