描述
给定 n 个闭区间 [ai; bi],其中i=1,2,…,n。任意两个相邻或相交的闭区间可以合并为一个闭区间。例如,[1;2] 和 [2;3] 可以合并为 [1;3],[1;3] 和 [2;4] 可以合并为 [1;4],但是[1;2] 和 [3;4] 不可以合并。
我们的任务是判断这些区间是否可以最终合并为一个闭区间,如果可以,将这个闭区间输出,否则输出no。
输入
第一行为一个整数n,3 ≤ n ≤ 50000。表示输入区间的数量。
之后n行,在第i行上(1 ≤ i ≤ n),为两个整数 ai 和 bi ,整数之间用一个空格分隔,表示区间 [ai; bi](其中 1 ≤ ai ≤ bi ≤ 10000)。
输出
输出一行,如果这些区间最终可以合并为一个闭区间,输出这个闭区间的左右边界,用单个空格隔开;否则输出 no。
样例输入
5
5 6
1 5
10 10
6 9
8 10
样例输出
1 10
代码
#include<bits/stdc++.h>
using namespace std;
struct section{
int x;
int y;
};
bool rule(section a,section b){
if(a.x!=b.x) return a.x<b.x;
return a.y<b.y;
}
/*
1 5
5 6
6 9
8 10
10 10
*/
int main(){
int N,maxr;
cin>>N;
section a[N];
for(int i=0;i<N;++i){
cin>>a[i].x>>a[i].y;
}
sort(a,a+N,rule);
maxr=a[0].y;
for(int i=0;i<N-1;++i){
if(a[i].y>=maxr){
maxr=a[i].y;
}
if(a[i+1].x>maxr){
cout<<"no";
return 0;
}
}
maxr=maxr>a[N-1].y?maxr:a[N-1].y;
cout<<a[0].x<<" "<<maxr;
return 0;
}