pytorch-pytorch中的自动微分

pytorch中的自动微分

t o r c h torch torch中的 t o r c h . a u t o g r a d e torch.autograde torch.autograde模块,提供了实现任意标量值函数自动求导的类和函数针对一个张量值需要设置参数 r e q u i r e s _ g r a d = T r u e requires\_grad = True requires_grad=True,通过相关计算即可输出其在传播过程中的梯度(导数)信息。

下面使用一个示例来解释 p y t o r c h pytorch pytorch中自动微分的计算,在 p y t o r c h pytorch pytorch中生成一个矩阵张量x,并且 y = s u m ( x 2 + 2 x + 1 ) y=sum(x^2+2x+1) y=sum(x2+2x+1),计算出y在x上的导数:

import torch
# 判断函数是否可以求导
x = torch.tensor([[1.0, 2.0], [3.0, 4.0]], requires_grad=True)
y = torch.sum(x ** 2 + 2 * x + 1)
# True是可以求导,false是不可以求导
print("x.requires_grad:", x.requires_grad)
print("y.requires_grad:", y.requires_grad)
print("x", x)
print("y", y)

# 计算y在x上的梯度
# y.backward()函数可以自动计算出
# y在x的每个元素上的导数
# 然后通过x的grad属性,即可获取此时x的梯度
y.backward()
print(x.grad)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值