1.模型的序列化 反序列化(没啥用但是基础的前置知识)
torch.save(什么都可以,文件的路径)
保存整个模型:torch.save(model,模型路径)
加载整个模型 torch.load(保存模型的路径)
保存模型参数:
state_dict = model.state_dict()
torch.save(state_dict,模型路径)
torch.load(文件的路径,指定的存放位置)
2.断点续训练:意外中断后继续训练 真的很重要
3.标签,类别名转换
4.取输出向量最大值的标号就是预测值
_,predicted = torch.max(model(输入),1)