【Bisecting K-Means算法】{0} —— Bisecting K-Means算法的简单介绍

Bisecting K-Means算法是一种解决K-Means算法可能收敛于局部最小值问题的优化方法,属于层次聚类。它从一个大簇开始,基于SSE最大值选择簇进行划分,以减少错误并提高聚类效果。相较于K-Means,Bisecting K-Means在运算速度上更快。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

K-Means算法通常只能收敛于局部最小值,这可能导致“反直观”的错误结果。
因此,为了优化K-Means算法,提出了Bisecting K-Means算法,也就是二分K-Means算法。

Bisecting K-Means算法 是一种层次聚类方法。

层次聚类(Hierarchical Clustering)是聚类算法的一种,通过计算不同类别的相似度类创建一个有层次的嵌套的树。


Bisecting K-Means算法 和 K-Means算法 有什么不同?

Bisecting K-Means算法 并不是一开始就随机选择 K 个中心点,而是先把所有点归为一个簇,然后将该簇一分为二。计算各个所得簇的代价函数(SSE),选择SSE最大的簇再进行划分以尽可能地减小误差,重复上述基于SSE划分过程,直到得到用户指定的簇数目为止。

Bisecting K-Means算法 通常比 K-Means算法运算快一些。

聚类算法的代价函数SSE能够衡量聚类性能,该值越小表示数据点越接近于它们的质心,聚类效果就越好。所以需要对SSE最大的簇进行再一次划分,因为误差平方和越大,表示该簇聚类越不好,越有可能是多个簇被当成一个簇了,因此首先需要对SSE最大的簇进行划分。


Bisecting K-Means算法的伪代码如下
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值