自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

...

...

  • 博客(1336)
  • 收藏
  • 关注

原创 Hadamard积

这种运算在图像处理、信号处理、深度学习等众多领域都有广泛的应用。例如,在神经网络中,激活函数之后的张量与特征图之间的逐元素乘法就是一种常见的Hadamard积应用。需要注意的是,为了执行Hadamard积,两个矩阵。的矩阵,那么它们的Hadamard积也是一个。的 Hadamard 积(按元素乘积)Hadamard积是指两个矩阵的。假设我们有两个相同大小的矩阵。对应位置上的元素相乘。

2024-09-19 19:31:29 436

原创 什么是对齐矩阵

例如,在论文中提到的LT-MSC(Low-Rank Tensor Constrained Multiview Subspace Clustering)方法中,对齐矩阵被用来。考虑一个多视角的数据集,比如图像数据可以从不同的特征(如颜色、纹理、边缘等)来描述。帮助我们在不同视角间保持一致性,从而更好地利用多视角数据的优势进行聚类。对齐矩阵的一个具体例子可以在优化问题的求解过程中找到,尤其是在处理。,该操作通过保留矩阵的奇异值大于阈值的部分来实现矩阵的低秩近似。,同时减少冗余,提高聚类的准确性。

2024-09-01 16:09:33 809

原创 快速傅立叶变换(FFT)和逆快速傅立叶变换 (IFFT)

在上述例子中,我们首先通过 FFT 将张量AAA的前向切片转换到了频域,然后对频域中的前向切片进行了处理(例如,软阈值操作),最后通过 IFFT 将这些处理后的前向切片转换回了时域。这样我们就得到了一个处理后的张量A\hat{A}A,它保留了原始张量AAA的形状,但是其内部的数值已经被修改,以反映我们在频域中所做的操作。

2024-08-13 16:42:40 754

原创 多模态子空间聚类(Multimodal Subspace Clustering, MSC)

多模态子空间聚类是一种强大的数据聚类技术,它能够从不同模态的数据中抽取共享的子空间结构,从而更准确地理解和聚类数据。在现实世界中,数据经常以多种形式存在,如图像、文本、音频等,这些不同的数据类型或视图携带了关于同一对象或场景的互补信息。在多模态子空间聚类中,我们假定每个模态(或视图)的数据都位于不同的子空间中,但这些子空间在某种意义上是相关的,即它们。MSC 的目标是在这些不同的模态或视图中发现共享的子空间结构,从而更准确地理解和聚类数据。,每个模态的数据集包含相同数量的数据点,但可能有不同的特征维度。

2024-07-20 15:55:01 891

原创 鲁棒多视图谱聚类方法

同时考虑每个视图的误差矩阵,这种方法能够准确地识别数据点的聚类结构,即使在数据质量参差不齐的情况下也能表现良好。在数据科学领域,多视图谱聚类方法是一种处理多源异构数据的强大工具,这类数据可以从不同的角度或“视图”观察到。鲁棒多视图谱聚类的目标是,即使在某些视图受到噪声或异常值的影响下,也能找到数据点在所有视图中共享的聚类结构。鲁棒多视图谱聚类方法是一种强大的数据聚类工具,它能够从多个视图中抽取共同的信息,并对噪声和异常值具有鲁棒性。,接下来的步骤是使用谱聚类算法对数据点进行聚类。我们的目标是找到一个。

2024-07-20 15:54:53 509

原创 鲁棒核稀疏子空间聚类模型(Robust Kernel Sparse Subspace Clustering, RKSSC)

鲁棒核稀疏子空间聚类模型(RKSSC)通过结合稀疏表示、核方法和鲁棒优化策略,能够有效地处理高维数据的聚类问题,特别是当数据受到噪声和异常值影响时。RKSSC 在高维特征空间中寻找数据点的稀疏表示,同时最小化噪声和异常值的影响,从而提高了聚类的准确性和鲁棒性。鲁棒核稀疏子空间聚类模型(RKSSC)是一种用于处理高维数据的聚类技术,特别设计用于对抗数据中的。RKSSC 的核心是利用核技巧将数据点映射到高维特征空间,然后在这个空间中寻找数据点的稀疏表示。的绝对值矩阵,或者更常见的是使用。寻找数据点的稀疏表示。

2024-07-20 15:54:46 571

原创 基于柯西损失函数的子空间聚类方法

基于柯西损失函数的子空间聚类方法通过最小化表示误差的柯西损失函数,增强了对异常值和噪声的鲁棒性。这种方法在处理高维数据和存在重尾分布的情况下表现优异,通过使用柯西损失函数,能够更准确地识别数据点的潜在子空间结构,从而实现更有效的聚类。

2024-07-20 15:54:38 861

原创 基于图的聚类和半监督分类的自加权多核学习方法

构建图:基于数据点之间的相似度构建图,其中相似度可以由不同的核函数计算得到。多核函数组合:定义一个组合核函数,该核函数是多个基础核函数的加权和,权重通过学习动态调整。自加权学习:在训练过程中,优化核函数的权重,使得组合核能够更好地反映数据点之间的关系。半监督学习利用少量的标注数据和大量的未标注数据进行学习,通过图的结构信息指导学习过程。聚类或分类:使用优化后的核函数和图表示进行聚类或分类。

2024-07-20 15:54:21 835

原创 谱聚类模型:亲和力聚合方法(Affinity Aggregation for Spectral Clustering, AASC)

Affinity Aggregation for Spectral Clustering (AASC) 是一种改进的光谱聚类方法,它专注于提高聚类质量和效率,特别是在处理。AASC 特别适用于处理大规模数据集和多模态数据,因为它能够从不同的角度捕捉数据点之间的关系,从而获得更全面的聚类结果。聚合方法可以是简单的平均,也可以是加权平均,或者更复杂的非线性组合。相反,它的目标是通过构建和聚合相似度矩阵,然后利用谱理论进行数据点的聚类,以达到最优的聚类效果。:首先,根据数据的不同特征或不同的相似度度量方法,

2024-07-20 15:54:13 539

原创 低秩核子空间聚类方法(Low-Rank Kernel Subspace Clustering, LRKSC)

通过将数据映射到高维特征空间并在该空间中寻找低秩表示,LRKSC 能够揭示数据点在不同子空间内的内在结构,从而实现更准确的聚类。低秩核子空间聚类方法(LRKSC)通过结合核方法和低秩表示的优势,有效地处理了复杂非线性数据的聚类问题。这种方法在处理具有复杂非线性结构的高维数据时特别有效,如图像、视频和生物医学数据。核函数将原始数据映射到高维特征空间,然后在这个空间中寻找数据点的低秩表示。低秩核子空间聚类方法(LRKSC)是一种先进的聚类技术,它结合了。的优势,以处理复杂非线性数据的聚类问题。

2024-07-20 15:54:04 843

原创 对称正定(SPD)黎曼流形上的核稀疏子空间聚类(KSSCR)

核稀疏子空间聚类(KSSCR)是稀疏子空间聚类(SSC)的扩展,它不仅利用核方法处理非线性关系,而且还能在SPD黎曼流形上运行,以适应SPD矩阵的特殊性质。通过在Log-Euclidean空间中进行操作,KSSCR能够克服在非欧氏空间中直接进行计算的困难,从而在图像和视觉数据分析中展现出强大的性能。的聚类方法,它利用核方法和稀疏表示的原理,结合SPD黎曼流形的几何特性,实现了在复杂数据结构上的有效聚类。KSSCR的主要目标是在SPD黎曼流形上找到数据点的稀疏表示,然后使用这些表示进行聚类。

2024-07-20 15:53:56 737

原创 核稀疏子空间聚类方法(Kernel Sparse Subspace Clustering, KSSC)

KSSC 的核心在于利用核函数将数据点映射到高维空间,然后在这个空间中寻找数据点之间的稀疏表示,最终通过谱聚类实现数据点的有效聚类。核稀疏子空间聚类(KSSC)是一种先进的子空间聚类方法,它通过核技巧在高维特征空间中寻找数据点的稀疏表示,从而解决了。然而,在许多情况下,数据点的真实关系可能在高维空间中更加明显,尤其是在数据点分布于。通过引入核技巧,KSSC 能够在高维特征空间中找到数据点的。,即使在原始特征空间中数据点可能处于不同的低维子空间中。的绝对值矩阵,或者更常见的是,使用。

2024-07-20 15:53:47 865

原创 基于Frobenius范数构造L2-图的子空间聚类方法

这种方法通过最小化表示误差的Frobenius范数,确保了数据点能够被合理地表示为其他数据点的线性组合,进而揭示了数据点间的内在结构和潜在的子空间分布。-图的子空间聚类方法提供了一种系统的方式,通过量化数据点之间的关系,构建图表示,从而实现对高维数据的有效聚类。这种方法特别适合于处理高维数据,其中数据点分布在不同的低维子空间内。的Frobenius范数,我们能找出数据点之间最合适的线性表示方式,,这是一种衡量矩阵或张量元素平方和的根的范数。来构建图表示,进而实现对数据点的聚类。,它反映了数据点之间的。

2024-07-20 15:53:39 841

原创 基于低秩表示(Low-Rank Representation, LRR)的子空间聚类方法

基于低秩表示(LRR)的子空间聚类方法通过构建低秩矩阵来揭示数据点之间的潜在低维子空间结构,即使在存在噪声和异常值的情况下也能保持较好的聚类效果。LRR 不仅可以用于聚类,还可以用于数据降噪、异常检测和完成缺失值等应用。通过将数据点表示为其他数据点的线性组合,LRR 能够在高维数据集中识别出潜在的低维子空间,从而实现高效和准确的聚类。

2024-07-19 16:13:15 1029

原创 稀疏子空间聚类(Sparse Subspace Clustering, SSC)

SSC 的目标公式可以概括为上述的稀疏表示问题,它通过寻找稀疏系数矩阵来揭示数据点之间的内在子空间结构。通过谱聚类,SSC 最终将数据点划分到它们所属的子空间中,即使在高维和噪声环境下也能保持良好的性能。请注意,实际应用中,求解稀疏表示问题可能需要使用特定的优化算法,例如基追踪(Basis Pursuit)、正交匹配追踪(Orthogonal Matching Pursuit)或交替方向乘子法(Alternating Direction Method of Multipliers, ADMM)。

2024-07-19 16:06:58 650

原创 基于卷积神经网络(CNNs)的无监督多模态子空间聚类方法

基于卷积神经网络(CNNs)的无监督多模态子空间聚类方法是一种前沿技术,专门设计用于处理来自不同模态(如图像、文本、音频等)的高维数据,旨在自动学习表示并聚类这些数据,而无需任何标记信息。在融合后的表示空间中,应用子空间聚类算法识别数据点所属的子空间。,能够有效地处理来自不同模态的复杂数据,并在没有标记信息的情况下实现高质量的聚类。基于卷积神经网络(CNNs)的无监督多模态子空间聚类方法通过结合CNNs的。对于每种模态的数据,使用相应的CNNs。种模态的数据,其中每个模态的数据由。模态数据的特征表示。

2024-07-19 16:06:46 607

原创 基于固有几何结构约束的深度不完整多视图聚类方法

通过结合深度学习的表示学习能力与多视图数据的固有几何结构,这种方法能够有效地识别数据点的潜在分组,即使在数据缺失的情况下也能保持较高的聚类精度。在机器学习领域,基于固有几何结构约束的深度不完整多视图聚类方法是一种高级技术,旨在处理数据集由多个视图(或模态)组成,基于固有几何结构约束的深度不完整多视图聚类方法是一种强大的工具,用于处理多源、多模态且可能不完整的数据集。这种方法结合了深度学习的表示学习能力与多视图数据的固有几何结构,以实现更准确的聚类。,以及恢复固有几何结构,从而实现准确的聚类。

2024-07-19 16:06:39 456

原创 L1范数深度子空间聚类(L1-Norm Deep Subspace Clustering, L1-DSC)

L1范数深度子空间聚类(L1-DSC)是一种结合深度学习和子空间聚类技术的先进方法,用于高维数据的自动特征学习和聚类。这种方法利用L1范数的稀疏性促进属性,以及深度神经网络的表征学习能力,来发现数据的潜在低维子空间结构。

2024-07-19 16:06:35 995

原创 自监督卷积子空间聚类网络(Self-supervised Convolutional Subspace Clustering Network, SSCN)

通过自监督学习策略,SSCN能够有效地利用数据的内在结构,而不需要额外的标注信息,这使得它在各种领域中具有广泛的应用前景,包括计算机视觉、生物信息学和信号处理等。自监督卷积子空间聚类网络(SSCN)是一种先进的深度学习框架,它通过结合卷积神经网络的特征提取能力和子空间聚类的结构优势,能够在无监督或弱监督条件下学习数据的低维表示并进行聚类。SSCN的核心思想是通过自监督学习策略,利用数据自身的结构信息来指导模型学习,而不需要额外的标注数据。在训练过程中,SSCN不仅学习数据的表示,还。的优化可以看作是一种。

2024-07-19 16:06:24 632

原创 深度子空间聚类网络(Deep Subspace Clustering Networks, DSC-Nets)

深度子空间聚类网络(DSC-Nets)是一种创新的深度学习框架,它结合了深度学习的强大学习能力和子空间聚类的结构优势,能够在高维复杂数据中自动发现潜在的子空间结构,并在此基础上进行有效的聚类。DSC-Nets通过在神经网络的学习过程中直接优化自表达矩阵,实现了端到端的聚类学习,无需预聚类或额外的特征工程,这使得它在图像识别、生物信息学、信号处理等众多领域中具有广泛的应用前景。DSC-Nets结合了深度学习的强大表示能力和传统子空间聚类的结构优势,特别适用于。,并在此基础上进行有效的聚类。

2024-07-19 16:06:21 971

原创 谱曲率聚类(Spectral Curvature Clustering, SCC)

通过引入曲率的概念,SCC能够更精细地捕捉数据的局部几何特性,从而在复杂的数据分布中实现更准确的聚类。谱曲率聚类(SCC)是一种高度有效的聚类算法,它利用数据点的局部曲率信息来揭示数据的流形结构,从而更准确地进行聚类。SCC结合了流形学习和谱聚类技术,通过计算数据点在局部邻域内的曲率来揭示数据的内在几何结构,从而更准确地进行聚类。高曲率表示数据点位于流形的弯曲部分,而低曲率则表示数据点位于流形的平坦部分。SCC算法的核心在于利用数据点在局部邻域内的几何特性,即。曲率的计算基于数据点的局部邻域信息。

2024-07-19 16:06:12 770

原创 局部线性流形聚类(Locally Linear Manifold Clustering, LLMC)

通过利用局部线性嵌入(LLE)来估计数据点的局部几何特性,LLMC能够捕捉数据点在低维流形上的分布,然后通过谱聚类算法将数据点聚类到不同的流形区域。LLMC通过局部线性嵌入(LLE)来估计数据点的局部几何特性,然后利用这些信息构建一个`相似度矩阵``,最后应用谱聚类算法对数据点进行聚类。局部线性流形聚类(LLMC)是一种强大的聚类方法,它结合了流形学习和谱聚类技术,能够。,它试图保持数据点在局部邻域内的相对位置不变。的数据集,其中数据点分布在复杂的流形上。,然后应用谱聚类算法对数据点进行。

2024-07-19 16:06:04 1000

原创 局部谱最优超平面方法(Spectral Local Best-fit Flats, SLBF)

局部谱最优超平面(SLBF)方法是一种高效的子空间聚类技术,它通过局部最优超平面拟合和全局谱聚类的结合,能够准确地识别和分离数据点分布在多个低维子空间上的复杂数据集。通过在每个数据点的邻域内拟合最优超平面,SLBF能够有效地捕捉数据的局部特征,同时通过谱聚类技术实现全局的子空间分离,适用于图像识别、生物信息学和信号处理等多种领域。局部谱最优超平面(SLBF)方法是一种用于子空间聚类的技术,它特别适用于高维数据集,其中数据点分布在多个低维子空间上。,这个超平面能够最好地描述该邻域内的点。最优超平面的法向量。

2024-07-19 16:05:53 771

原创 局部子空间相似度(Local Subspace Affinity, LSA)

通过与谱聚类技术的结合,LSA能够在多种应用中实现高效的数据分析和模式识别,如图像分析、生物信息学和信号处理等领域。LSA能够捕捉数据的局部结构,即使在数据点分布复杂且存在噪声的情况下,也能准确地识别出数据点所属的子空间。LSA假设高维数据点分布在多个低维子空间上,通过计算每个数据点在局部邻域内的子空间表示,来。后,接下来的步骤通常是应用谱聚类技术来识别数据点所属的子空间。局部子空间相似度(LSA)是一种有效的子空间聚类方法,它。,来构建数据点之间的相似度矩阵。的局部子空间表示由其。所有数据点的表示系数。

2024-07-19 16:05:45 412

原创 基于子空间近邻表示和基于子空间自表示模型

基于子空间近邻表示和基于子空间自表示模型是现代机器学习和数据科学中的重要工具,它们能够帮助我们从高维数据中发现潜在的低维结构,进而用于聚类、降维、分类等任务。(Subspace Self-Representation, SSR)是两种用于子空间学习的技术,它们在数据聚类、降维、分类等任务中展现出优秀的性能。通过适当的正则化和优化策略,这些模型能够有效地捕捉数据的内在性质,提供强大的数据理解和分析能力。的其他数据点完全表示,而不受其他子空间数据点的影响。子空间学习是高维数据分析中的一个重要分支,

2024-07-19 16:05:35 716

原创 基于谱聚类的稀疏子空间聚类方法(Sparse Subspace Clustering via Spectral Clustering, SSC-SC)

通过结合稀疏表示和谱聚类技术,SSC-SC能够有效地识别和分离出数据点所属的不同子空间,从而实现准确的聚类。基于谱聚类的稀疏子空间聚类方法(SSC-SC)是一种强大的工具,用于处理复杂的数据集,特别是那些分布在多个低维子空间上的高维数据。稀疏子空间聚类(Sparse Subspace Clustering, SSC)是一种先进的聚类方法,特别适用于处理。,使得每个数据点都可以用其他数据点的稀疏组合。将数据点分组到不同的子空间中。,尤其是当数据点分布在多个低维子空间上时。的特征向量来实现数据点的分组,

2024-07-19 16:05:24 739

原创 块对角正则化(Block Diagonal Regularization, BDR)

通过独立地控制每个视图或模态的复杂度,BDR可以提高模型的泛化能力和计算效率,同时减少过拟合的风险。在设计和实施BDR时,选择合适的正则化函数和参数是非常重要的,以确保模型在不同视图之间的平衡和协调。块对角正则化(BDR)是一种有效的正则化技术,特别适用于多视图或多模态数据的机器学习模型。这可能需要自定义的优化器或算法,如交替方向乘子法(ADMM),来处理每个块的正则化约束。在许多情况下,数据集包含多个视图或特征组,每个视图可能携带关于相同实例的不同信息。的选择取决于具体的应用需求。参数矩阵的块对角线上。

2024-07-19 16:05:04 937

原创 自适应低秩多核学习(Adaptive Low-Rank Multiple Kernel Learning, ALR-MKL)

通过结合多核学习和低秩表示的优点,ALR-MKL能够提供准确、鲁棒的模型,即使在数据复杂和噪声大的情况下也能表现良好。自适应低秩学习进一步通过优化低秩表示的结构,使其适应数据的特性,提高模型的适应性和效率。自适应低秩多核学习(ALR-MKL)是一种高级的机器学习技术,用于处理具有复杂结构和。ALR-MKL的求解通常涉及交替优化低秩表示和核函数权重的过程。在多视图设置下,低秩表示可以帮助整合不同视图的信息,以发现数据的内在结构。自适应低秩多核学习(ALR-MKL)是一种强大的机器学习技术,

2024-07-19 16:04:54 585

原创 样本置信度

通过计算置信区间和理解置信度的概念,我们可以对总体参数做出有根据的估计,并评估这些估计的不确定性。置信度告诉我们,如果我们重复抽样多次,所得到的置信区间中包含总体参数的真实值的频率是多少。样本置信度是统计推断中的一个关键概念,它帮助我们理解从样本数据中得到的结论有多大的可靠性。相反,较窄的置信区间可能意味着较高的精度,但可能需要更大的样本量或更低的置信度。在统计学中指的是对从总体中抽取的样本数据进行分析时,对其结果可靠性的一种度量。较大的样本量通常会产生更窄的置信区间,这意味着对总体参数的估计更精确。

2024-07-18 17:09:11 913

原创 置信度自动加权的鲁棒多视图子空间聚类方法

置信度自动加权的鲁棒多视图子空间聚类(Confidence-Aware Robust Multi-View Subspace Clustering, CAR-MVSC)是一种先进的机器学习技术,专门设计用于处理具有多个视图(或模态)的高维数据,同时考虑各个视图的可靠性。这种方法通过自动调整每个视图的权重,以优化整个聚类过程的鲁棒性和准确性。CAR-MVSC的核心在于通过来动态调整其在聚类过程中的贡献。这种方法结合了、和,以提高聚类性能,尤其在数据受到噪声和异常值影响时表现突出。假设我们有VVV个视图,每个视

2024-07-18 17:05:50 775

原创 基于异核(多核)低秩表示的鲁棒多视图子空间聚类方法

基于异核低秩表示的鲁棒多视图子空间聚类方法(RMVSC-HK)是一种先进的聚类技术,它结合了多视图学习、低秩表示和核技巧,旨在提高聚类的鲁棒性和准确性,特别是在存在复杂噪声和非线性数据的情况下。通过精心设计的模型和求解算法,RMVSC-HK能够提供准确和鲁棒的聚类结果,为数据挖掘和模式识别领域提供了新的工具和技术。在多视图学习中,数据往往来自不同的源或表示,每个视图可能携带不同的信息和噪声。,来提高聚类的鲁棒性和准确性。不同视图的信息和鲁棒性,实现更精确的聚类效果。RMVSC-HK的核心在于使用。

2024-07-18 17:02:11 676

原创 多内核学习方法(Multiple Kernel Learning, MKL)

MKL问题的求解可以通过不同的算法实现,常见的算法包括序列最小优化(SMO)、梯度下降、凸优化等。其中,序列最小优化是SVM中常用的优化算法,它通过迭代更新权重和决策向量来逐步优化目标函数。在实际应用中,MKL需要仔细选择核函数集合和优化算法,以达到最佳的学习效果。MKL的优化问题通常伴随着约束条件,以确保权重的合理性和模型的有效性。MKL的核心思想是结合多个核函数的优势,以提高预测性能和模型的泛化能力。,MKL能够捕捉数据的多方面特征,提高模型的预测能力和泛化性能。可以捕捉数据的某一特定方面或特征。

2024-07-18 16:59:18 1094

原创 混合相关熵(Mixed Correlation Entropy)

混合相关熵(Mixed Correlation Entropy)并不是一个广泛使用的标准统计或信息理论术语,但它可能是指结合了相关性和熵的概念的一种度量。在信息论中,“熵”通常指的是,而“相关性”则描述了。因此,混合相关熵可能是指一种为了构建一个概念上的框架,我们可以先分别定义熵和相关性的概念,然后再探讨如何将它们结合起来形成混合相关熵。

2024-07-18 16:55:19 521

原创 协同表示(Collaborative Representation)

协同表示在图像识别、语音识别、生物信息学等多个领域都有广泛应用,尤其是在处理包含多种不同类型信息的数据集时,它能够整合不同源的信息,提高模型的性能和鲁棒性。协同表示在多种情况下都非常有用,尤其是在多模态数据融合中,如图像和文本的联合表示学习、多传感器数据的集成分析等。在处理包含多种不同类型信息的数据集时,协同表示能够显著提升模型的性能,特别是在面对复杂噪声和非线性数据时。协同表示是一种强大的多视图数据融合技术,通过共同优化所有视图的表示,它能够生成更全面、更鲁棒的数据理解。会导致更简单的表示,较小的。

2024-07-18 16:50:16 560

原创 内核策略(Kernel Trick)

内核策略是机器学习中的一项关键技术,主要用于将非线性问题转化为线性问题,通过在高维特征空间中进行线性操作,以解决原始输入空间中无法线性解决的问题。这一策略的核心是使用核函数(Kernel Function)来计算数据点在高维空间中的内积,而无需显式地将数据映射到高维空间。内核策略是机器学习中的一项关键工具,它通过使用核函数来避免显式高维特征空间的计算,从而简化了非线性问题的解决。在子空间聚类和其他领域,内核策略通过捕捉数据的非线性结构,显著提升了算法的性能和适用范围。

2024-07-18 16:45:18 663

原创 鲁棒低秩核多视图子空间聚类方法

RLKMSC的核心是通过构建一个表示模型来揭示数据的真实子空间结构。该模型利用非凸的Schatten p-范数正则化0p≤10

2024-07-18 16:41:40 544

原创 相关熵(Correntropy)

给定两个随机变量xxx和yyy,其相关熵VxyV(x, y)VxyVxyEkxyVxyEkxy)]其中E⋅E[\cdot]E⋅表示数学期望kxyk(x, y)kxy是一个核函数,通常选择kσxyexp⁡−∥x−y∥22σ2kσ​xyexp−2σ2∥x−y∥2​这里的σ\sigmaσ是核的宽度参数,控制着核函数的形状。

2024-07-18 16:35:23 797

原创 Schatten p-norm 正则化

给定一个矩阵AAA,其奇异值分解(SVD)为AUΣV⊤AUΣV⊤,其中UUU和VVV是正交矩阵,而Σ\SigmaΣ是一个对角矩阵,其对角线元素σi\sigma_iσi​是AAA的奇异值。∥A∥Sp∑i1min⁡mnσip1p∥A∥Sp​​​i1∑minmn​σip​​1/p这里的mmm和nnn分别是矩阵AAA的行数和列数σi\sigma_iσi​是A。

2024-07-18 16:31:43 700

原创 半二次优化(Half-Quadratic Optimization)

半二次优化是一种有效的优化技巧,通过引入辅助变量和交替优化过程,将复杂的非凸优化问题转换为一系列更简单的二次优化子问题。在子空间聚类和许多其他领域,半二次优化提供了一种实用的解决方案,可以有效地处理非线性结构和非高斯噪声,提高模型的鲁棒性和准确性。

2024-07-18 16:26:22 601

原创 Schatten p-范数

Schatten p-范数是一种衡量矩阵奇异值的范数,它在矩阵分析、信号处理、机器学习和优化等领域中广泛应用。Schatten p-范数的定义基于矩阵的奇异值分解(SVD),它对矩阵的奇异值进行某种形式的p次幂的累积度量。下面将详细介绍Schatten p-范数的定义、计算方法和在不同情况下的表现。给定一个矩阵X∈RD×NX∈RD×N,其奇异值分解(SVD)为UΣV⊤UΣV⊤,其中UUU和VVV分别是D×DD \times DD×D和N×。

2024-07-18 16:21:01 829

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除