摘 要
森林大火是影响最大的自然灾害之一,导致了人类和环境的巨大破坏。由于传感器和技术的快速发展,以及计算机视觉算法的成功,新的和完整的自动火灾监测和检测解决方案已被曝光。然而,在过去的几年里,只有少数的文献综述被提出来含盖了直到2015年的研究。为了填补这一空白,我们在本文中对这一问题进行了最新的全面回顾。首先,我们介绍了这些系统的一般描述和在可靠性、灵活性和效率方面的比较分析。然后,我们介绍了基于视觉的火灾检测方法,我们主要分注的是基于深度卷积神经网络(CNN)的技术。
关键词 火灾检测;火灾监控;基于视觉的系统;深度卷积神经网络
1 简介
森林火灾一直是对森林财富具有灾难性影响的主要环境灾难之一。它们很快就会失去控制,而扑灭它们需要巨大的努力、时间和资源。最近的统计数据显示,在过去10年中,平均每年发生33.863起森林大火,损失高达51亿美元。此外,Lee等人在2017年进行的一项研究显示,全世界每年约有33.9万人死于野火。关于这些令人震惊的数字,在早期阶段检测、监测和扑灭森林火灾的系统是至尖重要的。
早期的火灾监测和探测系统(FMDS)是基于传统的方法,如通过现场或视频监控进行人工监督。然而,这些技术存在一些不准确和错误的检测,主要是由于人类监督能力的限制。由于这些原因,研究人员一直致力于通过利用技术进步来实现火灾探测系统的自动化。
为了减少火灾的影响,已经提出了几种方法来提高FMDS的可靠性。基于视觉的火灾检测方法是最通常和更有趣的。火灾监测是FMDS的第一个层次,这一层次对于在视觉传感器获得的图像中检测和定位火灾是至尖重要的。
自动火灾检测由于其重要性而吸引了研究界,并提出了大量解决这一问题的建议。据我们所知,在过去的几年里,只有少数文献综逑涵盖了这个问题。我们主要引用了YUAN等人[4]在2015年,Cetin等人在2014年,Alkhatib和Mahdipour等人在2013年的作品。自2015年以来,由于传感器、技术的快速发展以及深度学习算法的成功,新的研究和完整的解决方案已经被提出。因此,我们在本文中提供了尖于森林火灾监测和检测问题的最新的全面的再观点,我们认为这有助于理解这个问题、它的主要挑战、陷阱和技术现状。
本文的其余部分组织如下:在第2节,我们回顾了用于检测和监测火灾系统的技术。我们在第3节中介绍了基于vision的火灾检测方法,同时专注基于深度学习技术的方法。最后,在第4节中得出结论。
2 火灾探测的检测系统
FMDS的主要目的是提供一种机制,能够评估环境因素及其对环境的影响,以及探测火灾,甚至在早期阶段预知其发生情况。FMDS可以分为三类:地面系统、卫星系统和无人驾驶航空器系统。
2.1 地面系统
传统的地面系统,也称为地面系统,是基于人类的监督。火灾探测和监测是通过在当地监督区域或通过分析当地传感器(如火焰、烟雾和热检测器以及气体传感器)提供的数据进行的。
为了提高系统效率和探测火灾的确切位置,还集成了环境传感器。这些传感器在白天和晚上都用来探测火灾和烟雾,并确定其特征。陆地系统中采用的主要传感器是视觉或红外(IR)相机、红外光谱仪和光探测和测距系统(LIDAR)。
2.2 基于卫星的系统
卫星系统以空间传感器为基础,是最发达的火灾遥感设备。这些传感器以其可靠性和大面积监测著称,因为它们以多种空间和时间分辨率获取图像。空间传感器在地球观测方面有许多应用,如道路提取、建筑检测、土地覆盖分类和火灾检测和监测。在这项任务中,几个传感器被用来评估火灾期间的环境特征以及随之而来的环境变化程度。
1990年至2000年期间,高级甚高分辨率辐射计(AVHRR)获取的图像被用于分析烧毁地区的环境特征,因为AVHRR能够长期重建烧毁地区的数据集。在1998年和2000年,SPOT-VEGETATION (Systeme Pour TObservation de la Terre Vegetation)和MODIS(中等分辨率成像分光仪)也被用于探测火灾和绘制烧毁区地图,因为它们具有高质量的光谱和时间分辨率以及数据的可能性。高到中等分辨率的传感器(Landsat TM/ETM+)也被用于这项任务,因为其空间、光谱和辐射分辨率比AVHRR更高。最近,新的欧洲卫星Sentinel-2A被应用于FMDS,因为它具有更高的空间分辨率、光谱和测量的地理计量性能。
还开发了一些技术来计算火灾引起的土壤和植被的变化程度,如归一化植被指数(NDVI)、植被覆盖指数(VCI) 、综合燃烧指数(CBI)和表面粗糙度指数(SRI)。这些技术的计算方法是将火后指数减去火前指数。
2.3 无人驾驶飞行器(UAUs)系统
无人机是没有人类飞行员的飞机。由于这种技术的发展,它们被用于民用和军用目的。无人机通过数据传输系统与地面站进行通信,该系统既传达来自地面的实时命令,也传达无人机获得的信息,这些信息可能是延迟的,通常是断断续续的。数据通过短距离的光程直接传输,最远可达150公里,或者间接地在卫星或空中矢量(飞机或无人机)上转播。
该监测系统包括以下步骤:(i)使用不同种类的传感器寻找潜在的火灾,包括视觉摄像机(用于白天)和/或红外摄像机(用于白天和夜间),(ii)用特定的al-gorithms检测火灾并通知淌防操作员,(iii)火灾诊断的初始化,寻找与火灾有尖的信息,如其位置和演变程度,(iv)火灾预测的初始化,使用车载远程监控传感器提供的信息实时预测火灾的演变。
1961年,无人机首次被美国林业局和森林火灾实验室用于收集森林火灾数据。后来,在2006年至2010年期间,NASA和美国林务局执行了14次无人机系统传感器任务。自主的地理空间数据收集、处理和交付在10分钟内获得。此外,事实证明,多光谱传感器可以集成必理和可视化数据,以提供近实时的情报。此外,无人机与基于计算机视觉的遥感系统相结合,增加了实时收集数据的效率,并在地理协调中确定火灾的当前位置。
2.4 森林火灾探测系统的比较
地面系统位于瞭望点,能够实时探测火灾。然而,这些系统的灵活性并不能掩盖它们的缺点,这些缺点主要是由人为的错误估计、视觉估计的不准确、较低的火灾定位精度和预测火灾和烟雾蔓延的困难造成的。
与地面和无人机系统相比,卫星系统具有若干优势,主要是大面积监测和更高的数据采集频率。然而,由于这些系统的时间分辨率较低,不具备早期野火探测的条件。事实上,获取地球的图像需要两天的时间。此外,空间分辨率和图像质量也会受到天气条件的影响。
可以很容易地得出结论,由于无人机的低成本和可靠的数据传输,它对火灾探测和监测具有重大意义。此外,与地面和卫星系统相比,无人机由于其实时监测系统和更高的数据采集频率以及火灾定位的准确性,被用于早期火灾检测。
3 基于视觉的火灾探测
已经提出了大量的基于视觉的火灾检测技术。为了突出机器学习技术的最新进展,在本评论中,我们选择将其分为基于特征和深度学习的方法。
关于更多的早期工作,读者可以参考YUAN等人、Cye-tin等人、Alkhatib等人和Mahdipour等人的评论。
数据集:一些数据集被用来训练和测试学习方法,特别是卷积神经网络(CNNs)方法。它们包含大量的图像从森林环境中的不同火灾实验以及室内和室外环境的不同场景中获得的视频。数据包括火灾、非火灾、烟雾和非烟雾的正负序列/图像。数据集的例子有火灾检测数据集、Flickr数据集和用于火焰和烟雾检测的FIRESENSE视频数据库,其中包含用于火焰检测的11个正面视频和16个负面视频以及用于烟雾检测的13个正面视频和9个负面视频。
然而,由于许多原因,即使该领域有许多现有的开放数据集,研究人员也不容易获得真实数据。没有标准的开源数据集用于评估FMDS,这使得与最先进的方法的比较变得有点关键。
3.1 基于特征的火灾检测
基于颜色的方法是解决这一问题的最简单和最常用的技术。它们包括在将像素值转换为特定的颜色空间后定义一个范围。例如,RGB色彩空间通道与HSV色彩空间的饱和度成分的组合被证明对提取火灾和烟雾像素是有效的。YCbCr颜色空间被用来构建一个用于火焰像素分类的通用色度模型。YUV颜色模型也被用来根据火灾强度的时间变化来实时检测火灾,因为与RGB颜色空间相比,它能有效分离亮度和色度。
尽管如此,基于颜色的火灾探测方法的性能受到了定义烟雾特征的复杂性的限制,在大多数情况下,烟雾会与云层相混淆。这个问题通过分析火焰和烟雾的光谱、时间和空间特征得到了解决。在同一方向上,一种基于结合火焰的颜色和湿度的方法提高了室内和室外环境中火灾检测的可靠性。
结合提出的从监视摄像机获得的视频中提取的不同火焰特征(颜色、形状和火焰运动)的组合,以减少由火灾引起的错误警报。
Kim等人也提出了融合立体红外热像仪和FMCW雷达。该方法将立体红外视觉的距离误差间隔从1%和19%减少到1%和2%,并在以低能见度和高温为特征的火灾烟雾环境中表现出良好效率。
有人提出了一种基于静态和动态纹理特征的新方法。首先, YCbCr颜色空间被用来分割输入图像。静态特征是通过混合纹理描逑符获得的,而动态纹理特征是通过二维时空小波分解和三维体积小波分解获得的。该方法在VisiFirc数据集以及由真实世界图像形成的数据集上进行了测试。检测率达到了95.65%,同时显示了减少由具有相同火灾颜色的移动物体引起的错误警报的能力。
3.2 深度学习方法
近年来,人们对深度学习方法进行了回顾和讨论。这些方法可以分为四类。在这些类别中,基于卷积神经网络(CNN)的技术在火灾监测和检测任务中应用最多。出于这个原因,我们将在本节中重点讨论基于CNN的深度学习方法Zhang等人提出了一个基于训练完整图像和细粒度斑块火灾分类器的深度CNN模型。他们是第一个使用补丁级符号的人。完整的图像首先被这个模型测试。如果它包含火灾,则采用神经网络分类器来检测精确位置。在以下方面取得了良好的结果使用他们的基准数据集,检测准确率为97%,测试为90%。在中提出了一个CNN模型用于识别真实视频序列中的火灾。该模型只检测红色火灾。该方法显示了时间成本的减少,比例从6到60。实现了更好的分类精度,并表明使用CNN检测视频中的火灾是非常有希望的,因为它在一些架构中提取复杂的特征并对火灾进行分类。
此外,Lee等人将深度CNN用于检测航空图像中的野火系统,因为其准确性高,而且不需要手工制作特征提取器。尽管CNN被广泛用于计算机视觉中的物体分类,但它们在火灾检测任务中的应用并不高。由于这个原因,许多CNN架构,如AlexNet、GoogLeNet、VGG13、改进的GoogLeNet和改进的VGG13,已经使用高分辨率的航空图像进行测试。对这些架构的评估表明,GoogLeNet和改进的VGG13具有更高的准确性和更好的性能。
Zhao等人提出了自己的深度CNN架构,称为"Fire_Net",用于检测、定位和识别航空图像中的野火。这个模型包含15层。在第一层,显著性检测方法被用来提取图像中的主要物体区域并计算其颜色和纹理特征。在第二层,两个逻辑回归分类器被用来识别ROI的每个特征向量是属于火焰还是烟雾,如果是阳性,则对这些区域进行分割。使用真实的野火航拍图像进行训练,证明了检测核心火区和提取火区的巨大性能,甚至是非常小的点火区。
在[30]和[29]中,提出丁两个CNN模型用于检测和定位监视视频中的火灾。第一个模型是受GoogleNet架构的后发,第二个模型是基于SqueezeNet架构。选择这些模型的原因有很多,如其合理的计算复杂性、更好的分类性能以及与其他模型相比在FPGA上实现的更高可行性。使用各种数据集,测试结果达到了较高的火灾检测精度,证明可以将火灾灾害降到最低,并在现实世界的监挫网络中实现该系统。最近,基于CNN模型的区域被高度运用于通用的物体检测方法。这些模型被用来同时检测物体并预测它们在每个位置的物体性分数。
R-CNN[9]是一种区域CNN模型,被证明在实时生成高质量区域建议方面具有最佳性能。出于这个动机,这个模型在[38]中被用来检测烟雾。真实森林和合成烟雾图像的测试结果证明了这一解决方案在实际早期火灾监测检测中的可行性。Young等人也使用更快的R-CNN来实时检测和定位火灾。使用各种图像,如森林火灾、煤气灶火灾和蜡烛火焰,获得了检测准确率为99.24%和平均预精确度为0.7863的出色表现。
在同一方向上,Shen等人采用了基于CNN模型的其他区域,YOLO(You Only Look Once)统一的深度学习模型,以检测火焰从视频。获得了良好的准确性和高精度的火焰检测,并证明可以作为火灾检测的实时模型。
4 总结
在本文中,对火灾监测和检测系统进行了广泛的文献调查。这些系统的主要目标是实时探测和了解火灾的演变。对地面、卫星和无人机系统在可靠性、灵活性和效率方面的比较分析表明,由于无人机的低成本和可靠的数据传输以及最重要的实时必理,它对火灾探测和监测具有重大意义。我们还介绍了基于视觉的火灾检测技术的最新回顾,同时重点介绍了基于深度学习算法的技术。与经典方法相比,后者在解决火灾检测和识别问题方面表现得更加稳健和高效。
参考文献
- Lee, W., Kim, S., Lee, Y. T., Lee, H. W., and Choi, M.: Deep neural networks for wild fire detection with unmanned aerial vehicle. In: 2017 IEEE International Conference on Con-sumer Electronics (ICCE). IEEE, p. 252-253. IEEE (2017).
- Dimitropoulos, K., Gunay, O., Kose, K., Erden, F., Chaabene, F., Tsalakanidou, F. … and Cetin, E.: Flame detection for video-based early fire warning for the protection of cultural heritage. In: Euro-Mediterranean Conference. Springer, Berlin, Heidelberg, p. 378-387 (2012).
- San-Miguel-Ayanz, Jesus, and Nicolas Ravail.: Active fire detection for fire emergency management: Potential and limitations for the operational use of remote sensing. Natural Hazards, 35(3), 361-376 (2005).
- Yuan, Chi, Youmin Zhang, and Zhixiang Liu.: A survey on technologies for automatic forest fire monitoring, detection, and fighting using unmanned aerial vehicles and remote sensing techniques. Canadian journal of forest research, vol. 45, no 7, p. 783-792 (2015).
- Alkhatib, Ahmad AA.: A review on forest fire detection techniques. International Journal of Distributed Sensor Networks, vol. 10, no 3, p. 597368 (2014).
- Mahdipour, Elham, and Chitra Dadkhah. : Automatic fire detection based on soft comput-ing techniques: review from 2000 to 2010. Artificial intelligence review, vol. 42, no 4, p. 895-934(2014).
- Çetin, A. E., Dimitropoulos, K., Gouverneur, B., Grammalidis, N., Günay, O., Habiboǧlu, Y. H., and Verstockt, S.: Video fire detection–review. Digital Signal Processing, vol. 23, no 6, p. 1827-1843 (2013). 8
- Den Breejen, E., Breuers, M., Cremer, F., Kemp, R., Roos, M., Schutte, K., and De Vries, J. S…: Autonomous forest fire detection. In: Proc. 3rd Int. Conf. on Forest Fire Research. p. 2003-2012 (1998).
- Ren, S., He, K., Girshick, R., and Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. In Advances in neural information processing systems .pp. 91-99 (2015).
- Olsson, H., Egberth, M., Engberg, J., Fransson, J. E., and Pahlén, T. G.: Current and emerging operational uses of remote sensing in Swedish forestry. In: McRoberts, Ronald E.; Reams, Gregory A.; Van Deusen, Paul C.; McWilliams, William H., eds. Proceedings of the seventh annual forest inventory and analysis symposium; October 3-6, 2005; Port-land, ME. Gen. Tech. Rep. WO-77. Washington, DC: US Department of Agriculture, For-est Service. 39-46. Vol. 77. (2007).
- Wilson, Carl C., and James B. Davis.: Forest fire laboratory at Riverside and fire research in California: Past, present, and future. Gen. Tech. Rep. PSW-105. Berkeley, Calif.: Pa-cific Southwest Research Station, Forest Service, US Department of Agriculture. 22 p, vol. 105 (1988).
- Tranchitella, M., Fujikawa, S., Ng, T. L., Yoel, D., Tatum, D., Roy, P., and Hinkley, E…: Using tactical unmanned aerial systems to monitor and map wildfires. In: AIAA In-fotech@ Aerospace 2007 Conference and Exhibit. p. 2749 (2007).
- Ambrosia, V. G., Wegener, S., Zajkowski, T., Sullivan, D. V., Buechel, S., Enomoto, F., and Hinkley, E.: The Ikhana unmanned airborne system (UAS) western states fire imaging missions: from concept to reality (2006–2010). Geocarto International, vol. 26, no 2, p. 85- 101 (2011).
- Merino, L., Caballero, F., de Dios, J. R. M., Maza, I., and Ollero, A.: Automatic forest fire monitoring and measurement using unmanned aerial vehicles. In: Proceedings of the 6th International Congress on Forest Fire Research. Edited by DX Viegas. Coimbra, Portugal. (2010).
- Zhang, Youmin, and Jin Jiang.: Bibliographical review on reconfigurable fault-tolerant control systems. Annual reviews in control, vol. 32, no 2, p. 229-252 (2008).
- Martínez-de Dios, J. R., Merino, L., Caballero, F., and Ollero, A.: Automatic forest-fire measuring using ground stations and unmanned aerial systems. Sensors, vol. 11, no 6, p. 6328-6353 (2011).
- Navarro, G., Caballero, I., Silva, G., Parra, P. C., Vázquez, Á. and Caldeira, R.: Evaluation of forest fire on Madeira Island using Sentinel-2A MSI imagery. International Journal of Applied Earth Observation and Geoinformation 58: 97-106 (2017).
- Ruiz, J. A. M., Riaño, D., Arbelo, M., French, N. H., Ustin, S. L., and Whiting, M. L.: Burned area mapping time series in Canada (1984–1999) from NOAA-AVHRR LTDR: A comparison with other remote sensing products and fire perimeters. Remote Sensing of Environment, 117, 407-414 (2012).
- Zhao, Z. Q., Zheng, P., Xu, S. T., & Wu, X.: Object detection with deep learning: A re-view. arXiv preprint arXiv:1807.0551 (2018).
- Zhao, Y., Ma, J., Li, X., and Zhang, J. : Saliency detection and deep learning-based wild-fire identification in uav imagery. Sensors 18.3: 712 (2018).
- Shen, D., Chen, X., Nguyen, M., and Yan, W. Q: Flame detection using deep learning. In 2018 4th International Conference on Control, Automation and Robotics (ICCAR). IEEE, (2018).
- Redmon, J., Divvala, S., Girshick, R., and Farhadi, A.:You only look once: Unified, real-time object detection. In The IEEE Conference on Computer Vision and Pattern Recogni-tion (CVPR), pp. 779- (2016). 9
- Iandola, F. N., Han, S., Moskewicz, M. W., Ashraf, K., Dally, W. J., and Keutzer, K.: Squeezenet: Alexnet-level accuracy with 50x fewer parameters and< 0.5 mb model size. arXiv preprint arXiv: 1602.07360 (2016).
- Zhang, Q., Xu, J., Xu, L., and Guo, H.: Deep convolutional neural networks for forest fire detection. In: Proceedings of the 2016 International Forum on Management, Education and Information Technology Application. Atlantis Press (2016).
- Di Lascio, R., Greco, A., Saggese, A., & Vento, M.: Improving fire detection reliability by a combination of videoanalytics. In: International Conference Image Analysis and Recog-nition. Springer, Cham,p. 477-484 (2014).
- Foggia, P., Saggese, A., & Vento, M.:Real-time fire detection for video-surveillance appli-cations using a combination of experts based on color, shape, and motion. In IEEE Trans-actions on Circuits and Systems for Video Technology, vol. 25, no 9, p. 1545-1556 (2015).
- Kim, Jong-Hwan, Joseph W. Starr, and Brian Y. Lattimer.; Firefighting robot stereo in-frared vision and radar sensor fusion for imaging through smoke. Fire Technology, vol. 51, no 4, p. 823-845 (2015).
- Bosch, I., A. Serrano, and L. Vergara.: Multisensor network system for wildfire detection using infrared image processing. The Scientific World Journal (2013).
- Muhammad, K., Ahmad, J., Mehmood, I., Rho, S., and Baik, S. W.: Convolutional Neural Networks Based Fire Detection in Surveillance Videos. In: IEEE Access, Volume: 6: 18174-18183 (2018).
- Muhammad, K., Ahmad, J., Lv, Z., Bellavista, P., Yang, P., & Baik, S. W.: Efficient Deep CNN-Based Fire Detection and Localization in Video Surveillance Applications. In: IEEE Transactions on Systems, Man, and Cybernetics: Systems 99: 1-16 (2018).
- Chen, Thou-Ho, Ping-Hsueh Wu, and Yung-Chuen Chiou.: An early fire-detection method based on image processing. In: 2004 International Conference on Image Processing, 2004. ICIP '04. IEEE, p. 1707-1710 (2004).
- Celik, Turgay, and Hasan Demirel.: Fire detection in video sequences using a generic color model. Fire Safety Journal, vol. 44, no 2, p. 147-158 (2009).
- Marbach, Giuseppe, Markus Loepfe, and Thomas Brupbacher.: An image processing technique for fire detection in video images. Fire safety journal, vol. 41, no 4, p. 285-289 (2006).
- Ho, Chao-Ching.: Machine vision-based real-time early flame and smoke detection. Measurement Science and Technology, vol. 20, no 4, p. 045502 (2009).
- Celik, Turgay, Hasan Demirel, and H. Ozkaramanli.: Automatic fire detection in video sequences. In: 2006 14th European Signal Processing Conference. IEEE, p. 1-5(2006).
- Yu, Chunyu, Zhibin Mei, and Xi Zhang. : A real-time video fire flame and smoke detection algorithm. Procedia Engineering, vol. 62, p. 891-898 (2013).
- Kim, Young-Jin, and Eun-Gyung Kim.:Fire Detection System using Faster R-CNN.INTERNATIONAL CONFERENCE ON FUTURE INFORMATION & COMMUNICATION ENGINEERING. Vol. 9. No. 1. (2017).
- Zhang, Qi-xing, et al. “Wildland Forest Fire Smoke Detection Based on Faster R-CNN using Synthetic Smoke Images.” Procedia engineering 211: 441-446 (2018).
- Frizzi, S., Kaabi, R., Bouchouicha, M., Ginoux, J. M., Moreau, E., & Fnaiech, F.: Convolutional neural network for video fire and smoke detection. In: IECON 2016 - 42nd Annual Conference of the IEEE Industrial Electronics Society. IEEE, (2016).
- Prema, C. Emmy, S. S. Vinsley, and S. Suresh. : Efficient flame detection based on static and dynamic texture analysis in forest fire detection. Fire Technology 54.1: 255-288 (2018). 10
- Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems 25 (NIPS 2012). p. 1097-1105(2012).
- Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., and Rabinovich, A.: Going deeper with convolutions. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1-9 (2015).
- Simonyan, Karen, and Andrew Zisserman. : Very deep convolutional networks for largescale image recognition. arXiv preprint arXiv:1409.1556 (2014).
- Chu, Thuan, and Xulin Guo.: Remote sensing techniques in monitoring post-fire effects and patterns of forest recovery in boreal forest regions: a review. Remote Sensing 6.1: 470-520 (2013).
- FireInfo, https://www.nifc.gov/fireInfo/nfn.htm, last accessed 2018/07/09.
- Statistics, https://www.iii.org/fact-statistic/facts-statistics-wildfires, last accessed 2018/07/04.
- AVHRR Homepage, http://noaasis.noaa.gov/NOAASIS/ml/avhrr.html, last accessed 2018/07/04.
- MODIS Web, https://modis.gsfc.nasa.gov/, last accessed 2018/07/04.
- Fire dataset, http://signal.ee.bilkent.edu.tr/VisiFire/,last accessed 2018/07/09.
50.UAVs, http://dronestpe.e-monsite.com/pages/un-drone-comment-ca-marche.html, last ac-cessed 2018/07/09. - LandsatHome,https://landsat.gsfc.nasa.gov/the-thematic-mapper/,last accessed 2018/09/10.
- Flickr dataset, http://conteudo.icmc.usp.br/pessoas/junio/DatasetFlicker/DatasetFlickr.htm/ , last accessed 2018/07/09.
- Firesense dataset, https://zenodo.org/record/836749#.W22IN870mUk, last accessed 2018/07/09.
- SPOT Homepage, http://www.spot-vegetation.com/index.html, last accessed 2018/09/10.
- Sentinel Homepage, https://sentinel.esa.int/web/sentinel/home, last accessed 2018/09/10.