此方法用于顺序推荐,和我的研究方向不一样,所以这里只探讨值得借鉴的部分
abstract:
现有的顺序推荐方法要么不能直接处理多模态,要么计算量大。为了解决这个问题,我们提出了一种新的多模态多层感知器(MMMLP),用于维护多模态序列以进行顺序推荐。MMMLP是一种纯粹基于mlp的架构,由三个模块组成:Feature Mixer Layer, Fusion Mixer Layer和Prediction Layer,并且在效率和效率方面都有优势。
methods:
在本文中,我们提出了一个基于MLP的多模态推荐框架,即MMMLP,可以显式地从各种模态中学习信息。图2说明了MMMLP的体系结构,它由三层组成:Feature Mixer Layer、Fusion Mixer Layer和Prediction Layer。
我们的框架是灵活的,可以包含不同模式的数据,我们在本文中主要关注图像和文本,这是除了项目序列之外最常用的模式类型。如图2所示,使用用户-物品交互历史中的图像、文本和物品序列作为输入,我们引入Feature Mixer Layer,包括三个Mixer模块来提取和处理图像、文本和物品序列信息。
Feature Mixer Layer
Feature Mixer Layer中有三个Mixer模块用于提取图像、文本和项目序列信息。我们首先将多模态原始数据传输到嵌入特征矩阵中。
具体而言,我们将图像加载为特征矩阵,利用预训练模型进行文本编码,并设置项目序列的可训练嵌入。然后,混频器模块处理来自图像、文本和项目序列的三种不同类型的嵌入输入。如图3所示,混合器模块由一