一门武功能否传承久远并被发扬光大,是要看缘分的。一般来说,师傅传授给徒弟的武功总要打个折扣,于是越往后传,弟子们的功夫就越弱…… 直到某一支的某一代突然出现一个天分特别高的弟子(或者是吃到了灵丹、挖到了特别的秘笈),会将功夫的威力一下子放大N倍 —— 我们称这种弟子为“得道者”。
这里我们来考察某一位祖师爷门下的徒子徒孙家谱:假设家谱中的每个人只有1位师傅(除了祖师爷没有师傅);每位师傅可以带很多徒弟;并且假设辈分严格有序,即祖师爷这门武功的每个第i代传人只能在第i-1代传人中拜1个师傅。我们假设已知祖师爷的功力值为Z,每向下传承一代,就会减弱r%,除非某一代弟子得道。现给出师门谱系关系,要求你算出所有得道者的功力总值。
输入格式:
输入在第一行给出3个正整数,分别是:N(≤105 )——整个师门的总人数(于是每个人从0到N−1编号,祖师爷的编号为0);Z——祖师爷的功力值(不一定是整数,但起码是正数);r ——每传一代功夫所打的折扣百分比值(不超过100的正数)。接下来有N行,第i行(i=0,⋯,N−1)描述编号为i的人所传的徒弟,格式为:Ki ID[1] ID[2] ⋯ ID[Ki ]其中Ki 是徒弟的个数,后面跟的是各位徒弟的编号,数字间空格间隔。Ki 为零表示这是一位得道者,这时后面跟的一个数字表示其武功被放大的倍数。
输出格式:
在一行中输出所有得道者的功力总值,只保留其整数部分。题目保证输入和正确的输出都不超过10
10
。
输入样例:
10 18.0 1.00
3 2 3 5
1 9
1 4
1 7
0 7
2 6 1
1 8
0 9
0 4
0 3
输出样例:
404
一开始还以为是树的题目,后来发现其实不用,先创建一个二维动态数组,数组的下标是该人的编号,数组的值是他的那些徒弟,然后当输入的k为0时,令i号人的mul值为输入的倍数,在递归的时候,如果遇到mul为0的,就继续递归它的徒弟,否则,sum加上他的倍数乘积,详细解释如下代码:
#include<iostream>
#include<string>
#include<algorithm>
#include<bits/stdc++.h>
#include<stack>
#include<set>
#include<vector>
#include<map>
#include<queue>
#include<deque>
#include<cctype>
#include<unordered_set>
#include<unordered_map>
#include<fstream>
using namespace std;
const int maxn=100005;
vector<int>v[maxn];
double mul[maxn];
double z,r,sum=0;
void dfs(int id,double power){//递归
if(mul[id]){//如果是得道者,说明mul不为0,此时sum需要加上当前的power与倍数的乘积
sum+=mul[id]*power;
}
else{//不是得道者,需要递归遍历它的徒弟
for(int i=0;i<v[id].size();i++){//一个人的徒弟
dfs(v[id][i],power*r);//每次递归,power都减少,所以乘以r
}
}
}
int main(){
int n;
cin>>n>>z>>r;
r=(100-r)/100;//将减少的转换为倍数,比如减少百分之1就表示乘以0.99
for(int i=0;i<n;i++){
int k;
cin>>k;
if(!k) cin>>mul[i];//k为0,得道者,mul记录倍数
else {
for(int j=0;j<k;j++){//不为零,记录i人的徒弟,都放数组里即可;
int x;
cin>>x;
v[i].push_back(x);
}
}
}
dfs(0,z);//从第0号人开始递归
cout<<int(sum);//输出整数型
return 0;
}