方法一:深度优先搜索
对于每一个非叶子节点,我们只需要分别计算其左右子树的最小叶子节点深度,当左右节点都为空时,返回1
struct TreeNode
{
int val;
TreeNode* left;
TreeNode* right; TreeNode() : val(0), left(nullptr), right(nullptr) {}
TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
TreeNode(int x, TreeNode* left, TreeNode* right) : val(x), left(left), right(right) {}
};
class Solution
{
public:
int minDepth(TreeNode* root)
{
if (root == nullptr) return 0;
if (root->left == nullptr && root->right == nullptr)return 1;
int min_depth = INT_MAX;
if (root->left != nullptr) min_depth = min(minDepth(root->left), min_depth);
if (root->right != nullptr) min_depth = min(minDepth(root->right), min_depth);
return min_depth + 1;
}
};
int main()
{
Solution A;
TreeNode* t = new TreeNode(3, nullptr, new TreeNode(9, nullptr, new TreeNode(20, nullptr,
new TreeNode(7, nullptr, nullptr))));
cout << A.minDepth(t) << endl;
return 0;
}
时间复杂度:O(n),其中n 是树的节点数。对每个节点访问一次。
空间复杂度:O(h),其中 h 是树的高度。空间复杂度主要取决于递归时栈空间的开销,最坏情况下,树呈现链状,空间复杂度为 O(n)。平均情况下树的高度与节点数的对数正相关,空间复杂度为 O(logn)
方法二:广度优先搜索
当我们找到一个叶子节点时,直接返回这个叶子节点的深度,如果左孩子不为空,把左孩子和depth+1作为一个pair入队,如果右孩子不为空,把右孩子和depth+1作为一个pair入队
struct TreeNode
{
int val;
TreeNode* left;
TreeNode* right; TreeNode() : val(0), left(nullptr), right(nullptr) {}
TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
TreeNode(int x, TreeNode* left, TreeNode* right) : val(x), left(left), right(right) {}
};
class Solution
{
public:
int minDepth(TreeNode* root)
{
if (root == nullptr) return 0;
queue<pair<TreeNode*, int>> qu;
qu.emplace(root, 1);
while(!qu.empty())
{
TreeNode* node = qu.front().first;
int depth = qu.front().second;
qu.pop();
if (node->left == nullptr && node->right == nullptr) return depth;
if (node->left != nullptr) qu.emplace(node->left, depth + 1);
if (node->right != nullptr) qu.emplace(node->right, depth + 1);
}
return 0;
}
};
int main()
{
Solution A;
TreeNode* t = new TreeNode(3, nullptr, new TreeNode(9, nullptr, new TreeNode(20, nullptr,
new TreeNode(7, nullptr, nullptr))));
cout << A.minDepth(t) << endl;
return 0;
}
时间复杂度:O(n),其中 n 是树的节点数。对每个节点访问一次。
空间复杂度:O(n),其中 n 是树的节点数。空间复杂度主要取决于队列的开销,队列中的元素个数不会超过树的节点数