- 博客(35)
- 收藏
- 关注
原创 ubuntu ros noetic 编译 ORB_SLAM2 过程记录
进入 /home/Cpp_work/ros/src/ORB_SLAM2/Thirdparty/DBoW2 目录,编译 DBoW2。src/ORB_SLAM2/Examples/ROS/ORB_SLAM2/src/AR/ViewerAR.h 中添加。修改 CMakeList.txt 中的 find_package open cv版本。5. 找不到 DBoW2 中的库文件。3. 设置 gcc 编译版本。1. 连接 eigen库。
2024-04-29 21:59:39 535
原创 pytorch
1.Pytorch查看网络结构from torchsummary import summary device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = models.resnet18().to(device) summary(model, (3,256,256))注意:以上三种方法在处理输出为tuple时(如:LSTM),会有BUGpytorch 踩坑之'tuple' object ha
2021-05-14 21:32:54 342
原创 windows 进程管理
1.查看PID任务管理器-》详细信息-》PID2.查看进程号对应端口netstat -ano|findstr "11965"3.查看PID对应进程tasklist|findstr "9088"
2021-01-01 14:18:28 316
原创 语义分割
Learning Dy namic Routing for Semantic Segmentation1.近年来,Neural Architecture Search (NAS)被广泛用于自动网络架构设计,使用NAS代替ASPP;Auto-DeepLab 使用启发式搜索或强化学习等方法构建网络。2.动态网络是近年来计算机视觉领域的研究热点,传统的方法主要是通过删除块或裁剪通道来进行图像分类,本文提出了一种基于门控构建网络,以缓解输入之间的尺度差异。...
2021-01-01 14:14:45 215 2
原创 mmdector 使用dectors 训练自己的数据集
###########################################################################环境搭建torch=1.6.0cuda=10.1python=3.71.mmcv安装 https://download.openmmlab.com/mmcv/dist/index.html1)pip install mmcv (fail)2) pip install mmcv_full *** (fail)3)wg...
2021-01-01 14:13:57 656
原创 目标检测_CVPR2020
关键词:样本注意力(2)、NAS(3)单帧目标检测样本注意力Learning a Unifified Sample Weighting Network for Object Detection |code区域采样或加权对现代基于区域的目标探测器的成功至关重要。与以往优化目标函数时只关注硬样本的研究不同,我们认为样本权重应该是与数据和任务相关的。样本对目标函数优化的重要性取决于样本对目标分类和包围盒回归任务的不确定性。为此,我们设计了一个通用的损失函数来覆盖大多数基于区域的目标检测器,并.
2020-12-21 17:10:47 2914
原创 pyton高级语法
1.map()与lambda函数map(function,iterable...),对列表中的所有对象,执行相同的函数操作。例如:map(lambda y:os.path.join(humanBody,y),os.listdir(humanBody)) #读取humanBody文件夹中的所有文件,并与路经名进行拼接。注意:map(),py2返回列表,py3返回迭代器。2.迭代器与生成器https://www.jiqizhixin.com/articles/2020-06..
2020-12-07 19:25:38 907
原创 目标检测_多尺度任务_2020
AugFPN: Improving Multi-scale Feature Learning for Object Detection论文:https://arxiv.org/pdf/1912.05384.pdf代码:FPN的缺点:(1)特征融合前在进行特征融合之前,不同层次的特征分别进行11卷积层来减少特征通道,其中不考虑这些特征之间存在较大的语义差距。直接融合这些特征会降低多尺度特征代表的能力。(2)特征自顶向下融合,在特征融合中,特征以自顶向下的方式进行传播,利用来自高层特
2020-12-04 16:38:41 360
原创 DetectoRS
与faster RCNN相比,mask RCNN主要改变为2点:1.使用ROI Align 替换 ROI pooling2. 使用FCN生成目标的mask1.使用ROI Align 替换 ROI pooling由于ROI pooling 在计算时,存在两次量化操作(取整)导致信息丢失:1.RPN网络将原始图像上的建议区域映射到特征图上2.ROI pooling从不同大小的特征图输入池化出相同大小的特征图mask RCNN 直接使用小数计算,在最后池化时通过双线性插值得到虚拟.
2020-12-03 21:21:34 5068 1
原创 语义分割_CVF2020
目录单图像语义分割Modeling the Background for Incremental Learning in Semantic SegmentationSingle-Stage Semantic Segmentation from Image LabelsLearning Dynamic Routing for Semantic SegmentationSpatial Pyramid Based Graph Reasoning for Semantic Segmentatio
2020-12-03 17:43:44 1168
原创 深度学习踩坑记录
1.错误:*** out of dimension of x原因:使用batch_size == 2进行训练时,数据集不能被batch_size整除,最后一个输入batch_size的维度为1,经过torch.seqeeze() 函数处理时,压缩了特征向量中的batch_size维度,导致维度丢失,。解决:再txt文件中,删除最后一个数据,使得数据集可以被batch_size整除...
2020-11-22 02:22:14 1991 1
原创 pip uninstall xx 报错没有权限
问题描述:pip install tensorflow-gpuPermissionError: [Errno 13] Permission denied: '/usr/local/bin/***'PermissionError: [Errno 13] Permission denied: '/usr/local/lib/**'查看输出/usr/local/lib/python3.6/dist-packages/tensorflow/tools/pip_package/__init__..
2020-11-10 16:44:02 2010
原创 cudnn 安装
1. 找到对的cudnnhttps://developer.nvidia.com/rdp/cudnn-archive2.cp cudnn-10.0-linux-x64-v7.3.0.29.solitairetheme8 cudnn-10.0-linux-x64-v7.3.0.29.tgztar -xvf cudnn-8.0-linux-x64-v5.1.tgz3.sudo cp cuda/include/cudnn.h /usr/local/cuda-xx.x/inc..
2020-11-09 20:40:38 235
原创 训练参数设置,提高GPU使用率
1. batch_size,batch_szie决定了GPU的内存占用率,太大会cuda out of memory,太小GPU利用率很低。而且GPU的内存使用率受模型大小的影响很大,因此不同的模型对应的batch_size,会有很大差别。(16G,faster-RCNN :256,cycle-GAN:6)2. num_worksnum_works 的大小取决于cpu的核心数和内存大小,num_work 会在GPU运算(cpu空闲)时,取读取磁盘的数据到内存,提高读取效率。但是设置太大会 o
2020-11-05 10:42:24 2715
原创 dehazing
FFA-Net: Feature Fusion Attention Network for Single Image Dehazing1.增加像素注意力,让网络更加关注厚雾和高频纹理区域。2.FD-GAN: Generative Adversarial Networks with Fusion-discriminator for Single Image Dehazing1.开发了一种新的融合鉴别器,它将高频和低频信息作为额外的先验和约束来进行去雾处理。高频和低频可以帮助鉴.
2020-11-03 21:57:49 1105
原创 滤波算法
引导滤波/导向滤波通过一张引导图,对初始图像p(输入图像)进行滤波处理,使得最后的输出图像大体上与初始图像P相似,但是纹理部分与引导图相似。(让输出图像中每个点的像素梯度与引导图相似)引导滤波(导向滤波)的目的是,保持双边滤波的优势(有效保持边缘,非迭代计算),而克服双边滤波的缺点(设计一种时间复杂度为 O(1) 的快速滤波器,而且在主要边缘附近没有梯度的变形)引导滤波(导向滤波)不仅能实现双边滤波的边缘平滑,而且在检测到边缘附近有很好的表现,可应用在图像增强、HDR压缩、图像抠图及图像去雾等场
2020-11-03 14:49:15 296
原创 derain survey
图像分解:使用双边滤波将图像分解为低频和高频部分,分别包含图像的结构和纹理,然后对高频部分根据HOG特征(方向直方图)进行聚为2类(雨纹和背景纹理),对两个部分进行稀疏编码来实现基于MCA方法的图像分解效果。最后将高频部分的结合分量与低频部分进行积分得到去雨后的图像。联合区域网络:解决:1. ACM模型区域导致的背景模糊2.不同方向的雨纹叠加.3,雨累积形成的雨雾降低了背景和雨纹变的可见度创新:1.HRM模型2.迭代去雨Removing rain fr..
2020-10-28 16:18:00 448
原创 去雾-视频去雨
基于图像增强的去雾算法。基于图像增强的去雾算法出发点是尽量去除图像噪声,提高图像对比度,从而恢复出无雾清晰图像。代表性方法有:直方图均衡化(HLE)、自适应直方图均衡化(AHE)、限制对比度自适应直方图均衡化(CLAHE) 、Retinex算法、小波变换、同态滤波等等。基于图像复原的去雾算法。这一系列方法基本是基于大气退化模型,进行响应的去雾处理。代表性算法有:来自何凯明博士的暗通道去雾算法(CVPR 2009最佳论文)、基于导向滤波的暗通道去雾算法、Fattal的单幅图像去雾算法(Single ima
2020-10-25 22:27:19 2165
原创 Single Image Deraining: From Model-Based to Data-Driven and Beyond
深度学系虽然在区域的效果上取得了很大的进步,但是他们都是用全监督训练网络,但是却很难找到成对的有雨和无雨图片对,作为训练数据。一般的做法是,使用合成数据进行训练,但是合成雨和真实雨的差异让模型难以达到最好的效果。后来,提出了半监督的和全监督的方法,引入真实降雨图像作为训练数据。雨滴的亮度主要是由折射决定的,雨滴主要是通过雨滴的折射产生的。合成与模型:1.叠加模型:O = B + S,2.屏幕混合模型O = 1 1 (1 1 B) ◦ (1 1 S) = B + S...
2020-10-22 18:07:33 1678 5
原创 去雨去雾
Earth-Mover归一化的从一个分布变为另一个分布的最小代价, 可以用来测量两个分布(multi-dimensional distributions)之间的距离评估标准:1.PSNR(Peak Signal to Noise Ratio)峰值信噪比MAXI2为图片可能的最大像素值,即255,MSE 原图与雨图的均方误差2.SSIM (Structural SIMilarity)结构相似性计算将图片转化为 YCbCr 格式,计算PSNR,亮度 (luminance)...
2020-10-20 22:00:04 298
原创 python 无法import 已安装的包
1. 查看pip安装搜索路径python -m site 或 sys.path2. import 时显示,包已在别的环境下安装,重新安装也是安装到同样的环境去掉 ~/.bashrc 下的 export PYTHONPATH = "../site-package"增加当前虚拟环境的site-package路径 (可能导致其它环境下的问题)source ~/.bashrc3. import install --force-reinstall查看安装包是否已在当前环境下安装 pip .
2020-09-24 16:23:49 3112 1
原创 DGCNN (Dynamic Graph CNN for Learning on Point Clouds,动态图卷积网络)
1. 解决问题2. 关键思想DGCNN 认为 pointnet++ 属于静态图卷积:pointnet++ 根据点对的欧氏距离构建图,然后在每一层进行图粗化操作。使用最远点采样选取点作为下一层的输入。这样使得每一层的图不断减小,但是图的结构没有改变。DGCNN 的动态图,是因为在特征空间取k近邻,每层计算的特征都不相同,因此相当于每一层的图都具有不同的顶点。实验证明,特征空间中的距离可以更好的拉近相同语义点的距离。这样不仅学习到了点云的几何信息,而且学习如何对点云进行分组。..
2020-09-23 22:30:11 4216
原创 pointCNN 论文理解
1.解决问题x-变换对不同的形状进行加权,对相同形状而不同时序的点云,学习他的一个排列转换矩阵,使得作者指出,在实践中排列矩阵的学习,远远达不到理想的效果,但尽管如此,也能得到很好的结果。2.关键思想2.1 分层卷积类似于cnn,将特征聚集到超点中,每个超点包含了更高维度的信息,作为对底层细节的抽象,这样可以适用于分类任务,而且可以减少训练参数,加快学习过程。2.2 x-变换1. 归一化到局部坐标系为了让输出的特征不依赖于绝对坐标,将其归一化到局部坐标系,可以保证
2020-09-21 21:44:16 541
原创 partnet_anno_system 安装过程记录
1.node 编译模块问题 — gyp ERR! stack Error: `make` failed with exit code: 2解决:安装低版本node.js$nvm install v8.11.02. 安装mysql 忘记设置root密码ubuntu18.04 首次登录mysql未设置密码或忘记密码解决方法
2020-09-17 15:04:39 239 3
原创 PytorchStreamReader failed reading zip archive: failed finding central directory
The 1.6 release of PyTorch switched ``torch.save`` to use a newzipfile-based file format. ``torch.load`` still retains the ability toload files in the old format. If for any reason you want ``torch.save``to use the old format, pass the kwarg ``_use_new.
2020-09-11 21:14:37 12874 6
原创 numpy与torch的import 次序错误
Error: Numpy + Intel(R) MKL: MKL_THREADING_LAYER=INTEL is incompatible with libgomp-7c85b1e2.so.1 library.Try to import numpy first or set the threading layer accordingly. Set NPY_MKL_FORCE_INTEL to force it.https://github.com/pytorch/pytorch/issues/..
2020-09-11 18:27:42 3012
原创 拉格朗日乘子
拉普拉斯算子:https://zhuanlan.zhihu.com/p/67336297拉格朗日乘子法:https://blog.csdn.net/qq_33829547/article/details/100152556有函数f(x,y)f(x,y)f(x,y),要找在约束条件ψ(x,y)=0\psi(x,y)=0ψ(x,y)=0下的极值点,先构造拉格朗日函数F(x,y,λ)=f(x,y)+λψ(x,y)然后分别对xxx、yyy、λ\lambdaλ求偏导,得方程组:可求解出
2020-09-10 15:29:08 235
原创 编译动态连接库时,vector等未申明问题
解决:需要将 indclude "pch.h" 放到文件最顶端原因:编译器通过一个头文件stdafx.h来使用预编译头文件。stdafx.h这个头文件名是可以在project的编译设置里指定的。编译器认为,所有在指令#include "stdafx.h"前的代码都是预编译的,它跳过#include "stdafx. h"指令,使用projectname.pch编译这条指令之后的所有代码。(在编译的时候,在#include "stdafx. h"前面的语句都不予以编译)预编译头文件p...
2020-09-09 16:51:24 212
原创 协方差&残差&异方差
协方差:衡量两个样本之间的相关性残差:观测值与预测值(拟合值)之间的差,即是实际观察值与回归估计值的差.随机误差项:在总体回归参数PRF中,我们把个别的Yi围绕在它的期望值的离差(deviation)表述为:Ui=Yi-E(Y|Xi).其中离差Ui是一个不可观测的可正可负的随机变量,在专业术语中,把Ui称为随机干扰或随机误差项。因而,干扰项是从模型中省略下拉的而又集体地影响着Y的全部变量的替代物。异方差:经典线性回归模型的一个重要假定:总体回归函数中的随机误差项满足同方差性(服从
2020-08-11 10:31:57 4368
原创 Eclipse 常用快捷键
ctrl -shift - o 快速导入依赖包 ctrl -shift - H 查看对象的直接调用 ctrl -shift - g 全局查找 ctrl -g 包内查找 ctrl - H 自定义全局查找 ...
2020-08-10 15:22:17 80
原创 Java编程思想笔记
遗留问题?11.13.1 适配器 ?15.2.2 Java SE5的自动打包和自动拆包功能?第三章、Java的操作符3.1、对类的字节复赋值操作,实际是将两个对象指向共同的引用,例如: class tank(){ int level}tank1 = tank2 ; //引用操作(相当于两个指针之间的赋值) //当修改tank1的...
2020-08-10 15:19:18 343
原创 urllib3.exceptions.SSLError: Can‘t connect to HTTPS URL because the SSL module is not available.
python requests.get错误urllib3.exceptions.MaxRetryError: HTTPSConnectionPool(host='api.github.com', port=443): Max retries exceeded with url: /search/repositories?q=language:python&sort=stars (Caused by SSLError("Can't connect to HTTPS URL because the .
2020-08-10 15:17:35 5393
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人