金融风控数据挖掘-Task5


本学习笔记为阿里云天池龙珠计划Docker训练营的学习内容,学习链接为:https://tianchi.aliyun.com/specials/activity/promotion/aicampdocker

一、学习知识点概要:

此部分主要为之前建模调参的结果进行模型融合

二、学习内容:

1、平均

  • 简单平均
    简单加权平均,结果直接融合 求多个预测结果的平均值。pre1-pren分别是n组模型预测出来的结果,将其进行加权融
    pre = (pre1 + pre2 + pre3 +…+pren )/n

  • 加权平均法
    一般根据之前预测模型的准确率,进行加权融合,将准确性高的模型赋予更高的权重。
    pre = 0.3pre1 + 0.3pre2 + 0.4pre3

2、投票

假设你已经训练了一些分类器,每一个都达到了80%的准确率。这些分类器分别是一个逻辑回归分类器,一个支持向量机分类器,一个随机森林分类器,一个k近邻分类器,也许还有其他。有一种非常简单的方法来创建更好的分类器,
这个方法就是聚合每个分类器的预测,并将获得最多投票的类作为自己的预测。这种多数投票分类器被称为硬投票分类器。软投票是基于分类标签概率投票,将所有模型预测样本为某一类别的概率的平均值作为标准,概率最高的对应的类型为最终的预测结果;
投票分类器往往比单个的最佳分类器获得更高的准确率。事实上,即使每个分类器都是一个弱的学习者(意味着它只比随机猜测稍微好一点),如果有足够多的弱学习者并且他们足够多样化,那么最终集成得到的投票分类器仍然可以是一个强学习者(达到高精度)。

  • 简单投票
from xgboost import XGBClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier, VotingClassifier
clf1 = LogisticRegression(random_state=1)
clf2 = RandomForestClassifier(random_state=1)
clf3 = XGBClassifier(learning_rate=0.1, n_estimators=150, max_depth=4, min_child_weight=2, subsample=0.7,objective='binary:logistic')

vclf = VotingClassifier(estimators=[('lr', clf1), ('rf', clf2), ('xgb', clf3)])
vclf = vclf .fit(x_train,y_train)
print(vclf .predict(x_test))
  • 加权投票
    即在简单投票的基础上,在VotingClassifier中加入参数 voting=‘soft’, weights=[2, 1, 1],weights用于调节基模型的权重
from xgboost import XGBClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier, VotingClassifier
clf1 = LogisticRegression(random_state=1)
clf2 = RandomForestClassifier(random_state=1)
clf3 = XGBClassifier(learning_rate=0.1, n_estimators=150, max_depth=4, min_child_weight=2, subsample=0.7,objective='binary:logistic')

vclf = VotingClassifier(estimators=[('lr', clf1), ('rf', clf2), ('xgb', clf3)], voting='soft', weights=[2, 1, 1])
vclf = vclf .fit(x_train,y_train)
print(vclf .predict(x_test))

3、stacking

简单来说 stacking 就是当用初始训练数据学习出若干个基学习器后,将这几个学习器的预测结果作为新的训练集,来学习一个新的学习器。

# 以python自带的鸢尾花数据集为例
iris = datasets.load_iris()
X, y = iris.data[:, 1:3], iris.target


clf1 = KNeighborsClassifier(n_neighbors=1)
clf2 = RandomForestClassifier(random_state=1)
clf3 = GaussianNB()
lr = LogisticRegression()
sclf = StackingClassifier(classifiers=[clf1, clf2, clf3], 
                          meta_classifier=lr)


label = ['KNN', 'Random Forest', 'Naive Bayes', 'Stacking Classifier']
clf_list = [clf1, clf2, clf3, sclf]
    
fig = plt.figure(figsize=(10,8))
gs = gridspec.GridSpec(2, 2)
grid = itertools.product([0,1],repeat=2)


clf_cv_mean = []
clf_cv_std = []
for clf, label, grd in zip(clf_list, label, grid):
        
    scores = cross_val_score(clf, X, y, cv=5, scoring='accuracy')
    print("Accuracy: %.2f (+/- %.2f) [%s]" %(scores.mean(), scores.std(), label))
    clf_cv_mean.append(scores.mean())
    clf_cv_std.append(scores.std())
        
    clf.fit(X, y)
    ax = plt.subplot(gs[grd[0], grd[1]])
    fig = plot_decision_regions(X=X, y=y, clf=clf)
    plt.title(label)
 

plt.show()

4、blending

blending,主要思路是把原始的训练集先分成两部分,比如70%的数据作为训练集,剩下30%的数据作为测试集。第一轮训练: 我们在这70%的数据上训练多个模型,然后去预测那30%测试数据的label。第二轮训练,我们就直接用第一轮训练的模型在这30%数据上的预测结果做为新特征继续训练。

# 以python自带的鸢尾花数据集为例
data_0 = iris.data
data = data_0[:100,:]


target_0 = iris.target
target = target_0[:100]
 
#模型融合中基学习器
clfs = [LogisticRegression(),
        RandomForestClassifier(),
        ExtraTreesClassifier(),
        GradientBoostingClassifier()]
 
#切分一部分数据作为测试集
X, X_predict, y, y_predict = train_test_split(data, target, test_size=0.3, random_state=914)


#切分训练数据集为d1,d2两部分
X_d1, X_d2, y_d1, y_d2 = train_test_split(X, y, test_size=0.5, random_state=914)
dataset_d1 = np.zeros((X_d2.shape[0], len(clfs)))
dataset_d2 = np.zeros((X_predict.shape[0], len(clfs)))
 
for j, clf in enumerate(clfs):
    #依次训练各个单模型
    clf.fit(X_d1, y_d1)
    y_submission = clf.predict_proba(X_d2)[:, 1]
    dataset_d1[:, j] = y_submission
    #对于测试集,直接用这k个模型的预测值作为新的特征。
    dataset_d2[:, j] = clf.predict_proba(X_predict)[:, 1]
    print("val auc Score: %f" % roc_auc_score(y_predict, dataset_d2[:, j]))


#融合使用的模型
clf = GradientBoostingClassifier()
clf.fit(dataset_d1, y_d2)
y_submission = clf.predict_proba(dataset_d2)[:, 1]
print("Val auc Score of Blending: %f" % (roc_auc_score(y_predict, y_submission)))

三、学习思考与总结

平均或加权平均在个人认为在模型的融合上会有一些主观性的存在,而stacking的使用确实比较渐变,但运行代码的速度确实比较缓慢(笔者使用时跑不出结果),真正比赛时可能还需要将多种模型用加权平均、blending等方法混用来提高融合效果。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
智慧校园建设方案旨在通过融合先进技术,如物联网、大数据、人工智能等,实现校园的智能化管理与服务。政策的推动和技术的成熟为智慧校园的发展提供了基础。该方案强调了数据的重要性,提出通过数据的整合、开放和共享,构建产学研资用联动的服务体系,以促进校园的精细化治理。 智慧校园的核心建设任务包括数据标准体系和应用标准体系的建设,以及信息化安全与等级保护的实施。方案提出了一站式服务大厅和移动校园的概念,通过整合校内外资源,实现资源共享平台和产教融合就业平台的建设。此外,校园大脑的构建是实现智慧校园的关键,它涉及到数据中心化、数据资产化和数据业务化,以数据驱动业务自动化和智能化。 技术应用方面,方案提出了物联网平台、5G网络、人工智能平台等新技术的融合应用,以打造多场景融合的智慧校园大脑。这包括智慧教室、智慧实验室、智慧图书馆、智慧党建等多领域的智能化应用,旨在提升教学、科研、管理和服务的效率和质量。 在实施层面,智慧校园建设需要统筹规划和分步实施,确保项目的可行性和有效性。方案提出了主题梳理、场景梳理和数据梳理的方法,以及现有技术支持和项目分级的考虑,以指导智慧校园的建设。 最后,智慧校园建设的成功依赖于开放、协同和融合的组织建设。通过战略咨询、分步实施、生态建设和短板补充,可以构建符合学校特色的生态链,实现智慧校园的长远发展。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值