
【论文精读】Adv-Diffusion: Imperceptible Adversarial Face Identity Attack via Latent Diffusion Model
对抗性攻击包括在源图像上添加扰动,从而导致目标模型的错误分类,这表明了攻击人脸识别模型的潜力。现有的对抗人脸图像生成方法由于可移植性低、可检测性高,仍然不能达到令人满意的效果。在本文中,我们提出了一个统一的Adv-Diffusion框架,它可以在潜在空间而不是原始像素空间中产生难以察觉的对抗性身份扰动,利用潜在扩散模型的强大的绘画能力来生成真实的对抗性图像。














