
预处理
LBJgs
兴趣广泛但无一精通。
展开
-
分享model.predict(test)与model.predict_classes(test)的用法
**问题引入:**在以往我在做深度学习实验时,预测结果会调用model.ecaluate,可以直接到到loss与accuracy。但是最近要做D-S证据理论融合实验,这个输出结果就用不上了model = Sequential()score = model.evaluate(x_test, y_test_hot, verbose=1)print('test loss:', score[0])print('test accuracy:', score[1])model.predict(x_te.原创 2021-11-12 20:01:27 · 13703 阅读 · 0 评论 -
如何将灰度图的一通道变换为三通道[迁移学习]
看到这个问题的读者请点赞,真的思考了很久时间1. 前提一直想应用做迁移学习实验,但VGG16等经典模型的输入通道皆为三通道RGB格式,此处我记得要求是(224,224,3)。而我之前做实验所用数据为一维时序信号,有时转换为灰度图形式输入到卷积神经网络中,二者都是不可以的。2. 过程在知网上找了该篇文章文章在数据预处理的地方介绍了一种思想转换的具体流程为根据该作者的思想,我实现了上述方法,代码如下:3. 实现过程import copyimport numpy as npa = l原创 2021-04-16 19:55:11 · 3745 阅读 · 0 评论 -
在MNIST中,两种方法将x(浮点张量)限制在0~1的范围内
这里介绍两种常用的方法def load_data():#加载MNIST数据集 (x,y),(x_val,y_val)=datasets.minst.load_data() #转换为浮点张量,并缩放到-1~1 x = tf.convert_to_tensor(x,dtype=tf.float32)/255. #转换为整形张量 y = tf.convert_to_tensor(y,dtype=tf.int32) #one_hot编码 y = tf.原创 2020-08-01 14:49:01 · 603 阅读 · 0 评论