如何将灰度图的一通道变换为三通道[迁移学习]

博客作者通过研究解决了一维时序信号无法直接输入到VGG16等经典模型的问题。他们提出了一种预处理方法,将一维数据转换为三通道灰度图格式,以匹配模型要求的(224,224,3)输入。具体实现中,作者使用numpy进行数据重塑和通道变换,将每个样本复制成三通道并拼接,以适应卷积神经网络的输入需求。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

看到这个问题的读者请点赞,真的思考了很久时间

1. 前提

一直想应用做迁移学习实验,但VGG16等经典模型的输入通道皆为三通道RGB格式,此处我记得要求是(224,224,3)。而我之前做实验所用数据为一维时序信号,有时转换为灰度图形式输入到卷积神经网络中,二者都是不可以的。

2. 过程
在知网上找了该篇文章
在这里插入图片描述
文章在数据预处理的地方介绍了一种思想
在这里插入图片描述
转换的具体流程为
在这里插入图片描述
根据该作者的思想,我实现了上述方法,代码如下:

3. 实现过程

import copy
import numpy as np
a = list(range(24))
a = np.array(a)
a = a.reshape(2,3,4)

bs = list()
for i in range(2):
    c = []
# b = a[0,:,:] #取第一个数组
    b_auto = a[i,:,:]
    b_1 = copy.deepcopy(b_auto)
    b_2 = copy.deepcopy(b_auto)</
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值