看到这个问题的读者请点赞,真的思考了很久时间
1. 前提
一直想应用做迁移学习实验,但VGG16等经典模型的输入通道皆为三通道RGB格式,此处我记得要求是(224,224,3)。而我之前做实验所用数据为一维时序信号,有时转换为灰度图形式输入到卷积神经网络中,二者都是不可以的。
2. 过程
在知网上找了该篇文章
文章在数据预处理的地方介绍了一种思想
转换的具体流程为
根据该作者的思想,我实现了上述方法,代码如下:
3. 实现过程
import copy
import numpy as np
a = list(range(24))
a = np.array(a)
a = a.reshape(2,3,4)
bs = list()
for i in range(2):
c = []
# b = a[0,:,:] #取第一个数组
b_auto = a[i,:,:]
b_1 = copy.deepcopy(b_auto)
b_2 = copy.deepcopy(b_auto)</