为什么会出现Redis 和 MySQL 不一致问题?
Redis 和 MySQL 搭配使用在什么地方?
缓存量大但又不常变化的数据。也就是说,当我们在使用 Redis 和 MySQL 的时候,搭配使用的地方就是,数据量比较大,但是这个数据不会经常的变换的位置,比如说,某些商品信息的评论数据,也就是让 Redis
充当 MySQL 的缓存服务器,而要实现的目标也是比较简单的,当客户要查询数据的时候,先访问我们的 Redis,当 Redis
里面没有数据的时候,从 MySQL 中读取数据,并且存储到 Redis 中。
接下来问题来了,如果你的读和写存在并发的时候,会出现什么样子的问题呢?这个时候,我们就比较尴尬了,压根就没办法保证读和写的顺序,这时候就出现了
Redis 和 MySQL 数据不一致的问题了。
如何保证 Redis 和 MySQL 数据一致性?
Redis里的数据不立刻更新,等redis里数据自然过期。然后去DB里读取新值然后回填缓存。从理论上来说,给缓存设置过期时间,是保证最终一致性的解决方案
在这里,我们讨论三种更新策略:
先更新数据库,再更新缓存
这套方案,大家是普遍反对的。为什么呢?有如下两点原因。
3.1.1 原因一(线程安全角度)
同时有请求A和请求B进行更新操作,如果请求A比请求B先更新的数据库;正常情况下更新完数据库后应该也是请求B最后跟新的缓存,那么缓存中最终结果为B更新的数据;但可能会由于网络原因,最终是先来者A最后一个更新了缓存,导致最终缓存中结果是B更新的数据,这就导致了脏数据,因此不考虑。
1)线程A更新了数据库
2)线程B更新了数据库
3)线程B更新了缓存
4)线程A更新了缓存
3.1.2 原因二(业务场景角度)
(1)如果你是一个写数据库场景比较多,而读数据场景比较少的业务需求,采用这种方案就会导致,数据压根还没读到,缓存就被频繁的更新,浪费性能。
(2)如果你写入数据库的值,并不是直接写入缓存的,而是要经过一系列复杂的计算再写入缓存。那么,每次写入数据库后,都再次计算写入缓存的值,无疑是浪费性能的。显然,删除缓存更为适合。
接下来讨论的就是争议最大的,先删缓存,再更新数据库。还是先更新数据库,再删缓存的问题。
先删除缓存,再更新数据库
该方案会导致不一致的原因是。如果同时有一个请求A进行更新操作,另一个请求B进行查询操作。那么会出现如下情形:请求A先进行了写操作,删除缓存;请求B来了查询发现缓存不存在,就去数据库查询得到旧值,然后将旧值回填到缓存。而数据库存储的又是A更新的新值,这就导致出现了脏数据。如果不采用给缓存设置过期时间策略,该数据永远都是脏数据。;
1)请求A进行写操作,删除缓存
2)请求B查询发现缓存不存在
3)请求B去数据库查询得到旧值
4)请求B将旧值写入缓存
5)请求A将新值写入数据库
那么,如何解决呢?采用延时双删策略
也就是先删除缓存,再更新数据库后,延迟一段时间(1秒)再删除一下缓存
**这么做,可以将1秒内所造成的缓存脏数据,再次删除。**保证读请求完成以后,再进行删除操作
/**
*解决方法的伪代码
*/
public void write(String key,Object data){
//1、先删除缓存
redis.delKey(key);
//2、更新数据库,写入数据
db.updateData(data);
//3、休眠1秒
Thread.sleep(1000);
//4、再次删除缓存
redis.delKey(key);
}
那么,这个1秒怎么确定的,具体该休眠多久呢?
针对上面的情形,读者应该自行评估自己的项目的读数据业务逻辑的耗时。然后写数据的休眠时间则在读数据业务逻辑的耗时基础上,加几百ms即可。这么做的目的,就是确保读请求结束,写请求可以删除读请求造成的缓存脏数据。
当然,这种策略还要考虑 redis 和数据库主从同步的耗时。最后的写数据的休眠时间:则在读数据业务逻辑的耗时的基础上,加上几百ms即可。比如:休眠1秒。
如果你用了mysql的读写分离架构怎么办?
ok,在这种情况下,造成数据不一致的原因如下,还是两个请求,一个请求A进行更新操作,另一个请求B进行查询操作。
(1)请求A进行写操作,删除缓存
(2)请求A将数据写入数据库了,
(3)请求B查询缓存发现,缓存没有值
(4)请求B去从库查询,这时,还没有完成主从同步,因此查询到的是旧值
(5)请求B将旧值写入缓存
(6)数据库完成主从同步,从库变为新值
上述情形,就是数据不一致的原因。还是使用双删延时策略。只是,睡眠时间修改为在主从同步的延时时间基础上,加几百ms。
采用这种同步淘汰策略,吞吐量降低怎么办?
ok,那就将第二次删除作为异步的。自己起一个线程,异步删除。这样,写的请求就不用沉睡一段时间后了,再返回。这么做,加大吞吐量。
第二次删除,如果删除失败怎么办?
这是个非常好的问题,因为第二次删除失败,就会出现如下情形。还是有两个请求,一个请求A进行更新操作,另一个请求B进行查询操作,为了方便,假设是单库:
(1)请求A进行写操作,删除缓存
(2)请求B查询发现缓存不存在
(3)请求B去数据库查询得到旧值
(4)请求B将旧值写入缓存
(5)请求A将新值写入数据库
(6)请求A试图去删除请求B写入对缓存值,结果失败了。
ok,这也就是说。如果第二次删除缓存失败,会再次出现缓存和数据库不一致的问题。
如何解决呢?具体解决方案在后面会说。。。。。
先更新数据库,再删除缓存
知名社交网站facebook也在论文《Scaling Memcache at Facebook》中提出,他们用的也是先更新数据库,再删缓存的策略。
这种情况不存在并发问题么?
不是的。假设这会有两个请求,一个请求A做查询操作,一个请求B做更新操作,那么会有如下情形产生,如果这时缓存刚好失效,那么请求A只能查询数据库,得一个旧值,正好这时请求B更新了数据库并删除了缓存,A就把这个旧值回填到缓存中,造成了脏数据的出现
(2)请求A查询数据库,得一个旧值
(3)请求B将新值写入数据库
(4)请求B删除缓存
(5)请求A将查到的旧值写入缓存
然而,发生这种情况的概率又有多少呢?很小
发生上述情况有一个先天性条件,就是步骤(3)的写数据库操作比步骤(2)的读数据库操作耗时更短,才有可能使得步骤(4)先于步骤(5)。可是,大家想想,数据库的读操作的速度远快于写操作的(不然做读写分离干嘛,做读写分离的意义就是因为读操作比较快,耗资源少),因此步骤(3)耗时比步骤(2)更短,这一情形很难出现。
总结:
- 给缓存设有效时间是一种方案
- 异步延时删除策略,保证读请求完成以后,再进行删除操作。
如果删除缓存失败了怎么办?
提供一个保障的重试机制即可,这里给出两套方案。
方案一:
流程如下所示
(1)更新数据库数据;
(2)缓存因为种种问题删除失败
(3)将需要删除的key发送至消息队列
(4)自己消费消息,获得需要删除的key
(5)继续重试删除操作,直到成功
然而,该方案有一个缺点,对业务线代码造成大量的侵入。
于是有了方案二,在方案二中,启动一个订阅程序去订阅数据库的binlog,获得需要操作的数据。在应用程序中,另起一段程序,获得这个订阅程序传来的信息,进行删除缓存操作。
方案二:
流程如下图所示:
(1)更新数据库数据
(2)数据库会将操作信息写入binlog日志当中
(3)订阅程序提取出所需要的数据以及key
(4)另起一段非业务代码,获得该信息
(5)尝试删除缓存操作,发现删除失败
(6)将这些信息发送至消息队列
(7)重新从消息队列中获得该数据,重试操作。
备注说明:上述的订阅binlog程序在mysql中有现成的中间件叫canal,可以完成订阅binlog日志的功能。至于oracle中,博主目前不知道有没有现成中间件可以使用。另外,重试机制,博主是采用的是消息队列的方式。如果对一致性要求不是很高,直接在程序中另起一个线程,每隔一段时间去重试即可,这些大家可以灵活自由发挥,只是提供一个思路。