MapReduce学习总结(4)-----MapReduce框架原理

MapReduce框架原理

在这里插入图片描述

1. InputFormat数据输入

1.1切片与MapTask并行度决定机制
MapTask 的并行度决定 Map 阶段的任务处理并发度,进而影响到整个 Job 的处理速度。1G 的数据,启动8 个 MapTask,可以提高集群的并发处理能力。但是 1K 的数据,也启动 8 个 MapTask,并不会提高集群性能。
数据块: Block 是 HDFS 物理上把数据分成一块一块。数据块是 HDFS 存储数据单位。
数据切片:数据切片只是在逻辑上对输入进行分片,并不会在磁盘上将其切分成片进行 存储。数据切片是 MapReduce 程序计算输入数据的单位,一个切片会对应启动一个 MapTask。
在这里插入图片描述

1.2FileInputFormat 切片机制
切片机制
(1)简单地按照文件的内容长度进行切片
(2)切片大小,默认等于Block大小
(3)切片时不考虑数据集整体,而是逐个针对每一个文件单独切片
实例如下
在这里插入图片描述

1.3FileInputFormat 实现类
FileInputFormat 常见的接口实现类包括:TextInputFormat、KeyValueTextInputFormat、NLineInputFormat、CombineTextInputFormat 和自定义 InputFormat 等。
(1) TextInputFormat
TextInputFormat 是默认的 FileInputFormat 实现类。按行读取每条记录。键是存储该行在整个文件中的起始字节偏移量,值是这行的内容,不包括任何行终止 符(换行符和回车符)。
缺点:TextInputFormat 切片机制是对任务按文件规划切片,不管文件多小,都会 是一个单独的切片,都会交给一个 MapTask,这样如果有大量小文件,就会产生大量的 MapTask,处理效率极其低下

(2) CombineTextInputFormat
CombineTextInputFormat 用于小文件过多的场景,它可以将多个小文件从逻辑上规划到 一个切片中,这样,多个小文件就可以交给一个 MapTask 处理。
在这里插入图片描述

2.MapReduce 工作流程

在这里插入图片描述在这里插入图片描述
上面的流程是整个 MapReduce 最全工作流程,但是 Shuffle 过程只是从第 7 步开始到第 16 步结束,具体 Shuffle 过程详解,如下:
(1)MapTask 收集我们的 map()方法输出的 kv 对,放到内存缓冲区中
(2)从内存缓冲区不断溢出本地磁盘文件,可能会溢出多个文件 (当内存缓冲区被写入80%后,开始溢写。)
(3)多个溢出文件会被合并成大的溢出文件
(4)在溢出过程及合并的过程中,都要调用 Partitioner 进行分区和针对 key 进行排序
(5)ReduceTask 根据自己的分区号,去各个 MapTask 机器上取相应的结果分区数据
(6)**ReduceTask 会抓取(主动提取而不是MapTask传送)**到同一个分区的来自不同 MapTask 的结果文件,ReduceTask 会将这些文件再进行合并(归并排序)
(7)合并成大文件后,Shuffle 的过程也就结束了,后面进入 ReduceTask 的逻辑运算过程(从文件中取出一个一个的键值对 Group,调用用户自定义的 reduce()方法)
注意:
(1)Shuffle 中的缓冲区大小会影响到 MapReduce 程序的执行效率,原则上说,缓冲区 越大,磁盘 io 的次数越少,执行速度就越快。
(2)缓冲区的大小可以通过参数调整,参数:mapreduce.task.io.sort.mb 默认 100M。

3.Shuffle 机制

3.1Shuffle
Map 方法之后,Reduce 方法之前的数据处理过程称之为 Shuffle。
在这里插入图片描述

3.2 Partition 分区
要求将统计结果按照条件输出到不同文件中。
默认分区是根据key的hashCode对ReduceTasks个数取模得到的。用户没法控制哪个 key存储到哪个分区。

自定义Partitioner步骤
重写getPartition()方法
在Job驱动中,设置自定义Partitioner
自定义Partition后,要根据自定义Partitioner的逻辑设置相应数量的ReduceTask**(不设置reducetask数量,默认为1)**

分区总结
(1)如果ReduceTask的数量> getPartition的结果数,则会多产生几个空的输出文件part-r-000xx;
(2)如果1<ReduceTask的数量<getPartition的结果数,则有一部分分区数据无处安放,会Exception;
(3)如果ReduceTask的数量=1,则不管MapTask端输出多少个分区文件,最终结果都交给这一个 ReduceTask,最终也就只会产生一个结果文件 part-r-00000;
(4)分区号必须从零开始,逐一累加。

3.4 WritableComparable 排序
排序是MapReduce框架中最重要的操作之一。
MapTask和ReduceTask均会对数据按照key进行排序。该操作属于 Hadoop的默认行为。任何应用程序中的数据均会被排序,而不管逻辑上是否需要。
默认排序是按照字典顺序排序,且实现该排序的方法是快速排序。
对于MapTask,它会将处理的结果暂时放到环形缓冲区中,当环形缓冲区使用率达到一定阈值后,再对缓冲区中的数据进行一次快速排序(在内存中完成),并将这些有序数据溢写到磁盘上,而当数据处理完毕后,它会对磁盘上所有文件进行归并排序
对于ReduceTask,它从每个MapTask上远程拷贝相应的数据文件,如果文件大小超过一定阈值,则溢写磁盘上,否则存储在内存中。如果磁盘上文件数目达到 一定阈值,则进行一次归并排序以生成一个更大文件;如果内存中文件大小或者 数目超过一定阈值,则进行一次合并后将数据溢写到磁盘上。当所有数据拷贝完 毕后,ReduceTask统一对内存和磁盘上的所有数据进行一次归并排序。

排序方法
(1)部分排序
MapReduce根据输入记录的键对数据集排序。保证输出的每个文件内部有序
(2)全排序
最终输出结果只有一个文件,且文件内部有序。实现方式是只设置一个ReduceTask。但该方法在处理大型文件时效率极低,因为一台机器处理所有文件,完全丧失了MapReduce所提供的并行架构。
(3)辅助排序
(GroupingComparator分组) 在Reduce端对key进行分组。应用于:在接收的key为bean对象时,想让一个或几个字段相同(全部字段比较不相同)的key进入到同一个reduce方法时,可以采用分组排序。
(4)二次排序
在自定义排序过程中,如果compareTo中的判断条件为两个即为二次排序。

3.5 Combiner 合并
(1)Combiner是MR程序中Mapper和Reducer之外的一种组件。 (2)Combiner组件的父类就是Reducer。
(3)Combiner和Reducer的区别在于运行的位置
➢ Combiner是在每一个MapTask所在的节点运行;
➢ Reducer是接收全局所有Mapper的输出结果;
(4)Combiner的意义就是对每一个MapTask的输出进行局部汇总,以减小网络传输量
(5)Combiner能够应用的前提是不能影响最终的业务逻辑,而且,Combiner的输出kv 应该跟Reducer的输入kv类型要对应起来。(比如说求平均值时就不能用combiner)

4.OutputFormat 数据输出

4.1 OutputFormat 接口实现类
默认输出格式TextOutputFormat
自定义OutputFormat步骤
➢ 自定义一个类继承FileOutputFormat。
➢ 改写RecordWriter,具体改写输出数据的方法write()。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值