数字图像处理——第十二章 目标识别

目录

引言

12.1 模式和模式类

12.2 基于决策理论方法的识别

12.2.1 匹配

12.2.2 最佳统计分类器

12.2.3 神经网络

12.3 结果方法

12.3.1 匹配形状数

12.3.2 串匹配


引言

本章介绍的模式识别方法主要分为两大邻域:决策理论犯法和结构方法。

第一类方法处理的是使用定量描绘子来描述各种模式,如长度、面积和纹理等。

第二类方法处理的是由定性描绘子来描述的各种模式。

12.1 模式和模式类

模式是描绘子的组合,在有关模式识别文献中经常使用特征来表示描绘子。由机器完成的模式识别涉及自动地且人为干预尽可能少地将不同模式赋予不同类别的技术。

实验中常用的三种模式组合是向量(用于定量描述)、串和树(用于结构描述)。模式向量由粗体小写字母表示,如x,y和z,并采取下列形式:

式中每个分量xi表示第i个描绘子,n是与该模式有关的描绘子的总数。

模式向量x中的各个分量的性质,取决于用来描述该物理模式本身的方法。

串描述适用于生成其结构是基于基元的简单连接,并且通常是和边界形状有关系的目标模式和其他实体模式。对许多应用来说,一种更有效的方法是使用树形描述。基本上,多数层次排序方案都会导致树结构。树的根表示整幅图像,按层次不断细分,直到达到我们在图像解析不同区域的能力的极限为止。

12.2 基于决策理论方法的识别

决策理论方法识别以使用决策(或判别)函数为基础。令x=(x_{1},x_{2},...,x_{n})^{T}表示一个n维模式向量。对于W个模式类\omega_{1}, \omega_{2}, \cdots, \omega_{W},决策理论模式识别的基本问题是依据如下属性来找到W个决策函数d_{1}(\boldsymbol{x}), d_{2}(\boldsymbol{x}), \cdots, d_{u}(\boldsymbol{x}):如果模式x属于类\omega_{i},则

使用单一函数

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值