利率的计量

当我们谈论年利率的时候,根据复利频率的不同,会有不同的表现形式。

比如,假设年利率是10%,那么可以是一年按10%复利一次,也可以是半年按5%复利两次,还可以是每3个月按2.5%复利4次。

假设将A资金投资n年。如果利率是按年复利的,那么投资的终值为:

在这里插入图片描述

如果利率是对应于一年复利m次,那么投资终值为:

在这里插入图片描述
下面用Python程序来对复利m次的投资终值进行一个模拟操作。
假设初始投资 A 为100元,年利率 R 为10%,投资1年(n值),复利次数从1到15(m值)。

在这里插入图片描述

从图中可以看到,随着复利频率的增加,投资终值趋近于一个极限。
可以从数学上进行证明,当复利频率趋于无穷大的时候,投资的终值为:
在这里插入图片描述
其中e=2.71828。这种情况下对应的利率被称为连续复利(continuous compounding)利率。

在实际情况下,由于每天计算复利的频率非常高(每年复利365次)​,非常接近于连续复利,因此可以认为普通复利的计算方法与连续复利的计算方法是等价的。

对一笔资金,以利率R连续复利n年,相当于乘以e^Rn;
反过来我们可以计算贴现值。什么是贴现值呢?未来到手的资产在当前值多少钱,就是某资产的贴现值。一笔n年后的资金如果要计算贴现值,则以利率为R按连续复利进行贴现,相当于除以e^Rn。

假设Rc是连续复利利率,Rm是与之等价的每年m次复利利率。可以得到:

在这里插入图片描述
即:在这里插入图片描述

用这个公式可以对m次复利利率和连续复利利率进行相互转换,公式如下:

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值