使用BBC Datasets中的BBCSport数据集进行文本分类(新闻分类)

前言

使用BBC Sport数据集的新闻文本分类,这个数据集比较古老,又是英文数据集,且不需要进行文本处理,之前在网络上并没有找到使用这个数据集的中文资料。所以写了一篇博客。本人初学者,有些方面掌握的也并不是很好,请多多指教。

有关数据集

数据集下载自http://mlg.ucd.ie/datasets/bbc.html
raw text files为原始的新闻文本,已经按类放在不同的文件夹下
pre-processed dataset为经过分词,停止词剔除后的数据,共有四种,具体内容链接网站内有详细介绍。
我使用这些数据时,将前者的根文件夹命名为bbcsport_raw,后者命名为bbcsport。

代码部分1

from sys import path
from numpy.core.fromnumeric import size
import pandas as pd
import numpy as np
import math

dic = {'0':'athletics','1':'cricket','2':'football','3':'rugby','4':'tennis'}
# print(dic['0'])

df_mtx = pd.read_table('D:\\DATA_PYTHON\\bbcsport\\bbcsportmtx.txt',sep=' ',header=None,index_col=None,skiprows=2)
# print(df_mtx)
# print(df_mtx.dtypes)
# df_mtx = df_mtx.astype(int)
# print(df_mtx[:5])
# print(df_mtx.dtypes)
df_classes = pd.read_table('D:\\DATA_PYTHON\\bbcsport\\bbcsportclasses.txt',sep=' ',header=None,index_col=0,skiprows=4,names=[0])
# print(df_classes)
df_terms = pd.read_table('D:\\DATA_PYTHON\\bbcsport\\bbcsportterms.txt',header=None)
df_terms.index = range(1,len(df_terms)+1)
# print(df_terms[0:5])

对于所读取的数据的说明: df_mtx为稀疏矩阵的市场矩阵term频次数据分布。
市场矩阵的前两列为某term的频次信息在稀疏矩阵的第几行第几列(从1开始) .第三列为 频次信息。
稀疏矩阵的行代表terms序号(从1开始),列代表文章的序号(从001开始) 。
df_classes对应编号的新闻所对应的运动种类 df_termsterm,从1开始,与df_mtx对应。
有关矩阵市场,稀疏矩阵的内容百度即可。

如何根据每篇文章的单词词频构建出特征是文本分类最重要的一步.这里已经有了经过分词和停止词筛选后的数据集,若是使用其他原始的文本数据,则需要进行相似处理。
我采用的是使用VSM模型和TF-IDF构建文本的特征向量最后采用SVM进行分类,有关VSM的知识参考自:
https://blog.csdn.net/weixin_42398658/article/details/85063004
TF-IDF:某词语在一篇文章中出现的频次越高,出现的文章数量越少,则TF-IDF的值越大,TF-IDF反映了term对于某篇document的辨识度:
https://blog.csdn.net/zhaomengszu/article/details/81452907

doc_range = list(range(1,738))
term_range = list(range(1,4615))
VSM = pd.DataFrame(index=doc_range,columns=term_range)
# 计划用行向量储存每篇文章的特征向量
# print(VSM)
def word_count(file_path): 
    with open(file_path,'r',encoding='gb18030', errors='ignore') as f:
        content = f.read()
        # print(content,type(content))
        n = content.count(' ')+math.ceil(content.count('\n')/2)
        f.close()
        return n
# word_count统计文本中的单词总数(采用的是数' '的方式,一般与实际的词数差距不会太大,并且简单明了)
path_prefix = 'D:\\DATA_PYTHON\\bbcsport_raw\\'
# print(word_count(path_prefix+dic['0']+'\\001.txt'))
def TF_IDF(doc_index,file_path,term):
    a = df_terms[(df_terms[0]==term)].index.values[0]
    b = word_count(file_path)
    e = df_mtx[(df_mtx[0]==a)&(df_mtx[1]==doc_index)].index.values
    if e.size > 0:
        c = df_mtx[2][df_mtx[(df_mtx[0]==a)&(df_mtx[1]==doc_index)].index.values[0]]
    else:
        return 0
    TF = c/b
    # return TF
    d = len((df_mtx[df_mtx[0]==a]).index.values)+1
    IDF = math.log(737/d)
    # return IDF
    tf_idf = TF*IDF
    return tf_idf
# print(TF_IDF(1,path_prefix+dic['0']+'\\001.txt','hunt'))
# TF_IDF用于计算某一term在某一document中的TF-IDF值

VSM.at[1,1] = TF_IDF(1,path_prefix+dic['1']+'\\'+str(102-101).zfill(3)+'.txt',df_terms.at[1,0])
print(VSM)

for i in range(1,738):
    for j in range(1,4614):
        if i <= 101:
            VSM.at[i,j] = TF_IDF(i,path_prefix+dic['0']+'\\'+str(i).zfill(3)+'.txt',df_terms.at[j,0])
            VSM.at[i,4614] = 0
            print(i,j)
        elif i <= 225:
            VSM.at[i,j] = TF_IDF(i,path_prefix+dic['1']+'\\'+str(i-101).zfill(3)+'.txt',df_terms.at[j,0])
            VSM.at[i,4614] = 1
            print(i,j)
        elif i <= 490:
            VSM.at[i,j] = TF_IDF(i,path_prefix+dic['2']+'\\'+str(i-225).zfill(3)+'.txt',df_terms.at[j,0])
            VSM.at[i,4614] = 2
            print(i,j)
        elif i <= 637:
            VSM.at[i,j] = TF_IDF(i,path_prefix+dic['3']+'\\'+str(i-490).zfill(3)+'.txt',df_terms.at[j,0])
            VSM.at[i,4614] = 3
            print(i,j)
        else:
            VSM.at[i,j] = TF_IDF(i,path_prefix+dic['4']+'\\'+str(i-637).zfill(3)+'.txt',df_terms.at[j,0])
            VSM.at[i,4614] = 4
            print(i,j)
VSM.to_csv('VSM.csv')
# 双循环的64位浮点运算很慢,慢到难以忍受(全程大概90分钟);事后舍友说采用pandas自带的transform方法或许会变快,有兴趣的话可以尝试一下.

代码部分2

以下为简单地调用sklearn中的SVC进行的分类:

import pandas as pd
import numpy
from sklearn.model_selection import train_test_split
from sklearn.svm import SVC

VSM = pd.read_csv('D:\\Python_Work\\VSM.csv',index_col=0)
# print(VSM)
x = VSM.iloc[:,:4613].values
y = VSM[['4614']].values
train_data,test_data,train_label,test_label = train_test_split(x,y,random_state=1,train_size=0.7,test_size=0.3)

model = SVC(C=2,kernel='rbf',gamma=10,decision_function_shape='ovo')
model.fit(train_data,train_label.ravel())

train_score = model.score(train_data,train_label)
print("训练集:",train_score)
test_score = model.score(test_data,test_label)
print("测试集:",test_score)

有关SVC的使用,请阅读sklearn的手册或百度查询。

最终结果

训练集: 1.0
测试集: 0.9684684684684685
  • 5
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
好的,我会尽力回答您的问题。 首先,我们需要准备一个数据集。这里我选择使用Scikit-learn自带的手写数字数据集。代码如下: ``` python from sklearn.datasets import load_digits digits = load_digits() X = digits.data y = digits.target ``` 接下来,我们可以将数据集拆分成训练集和测试集。代码如下: ``` python from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) ``` 然后,我们可以使用KNN算法对手写数字数据集进行分类。代码如下: ``` python from sklearn.neighbors import KNeighborsClassifier knn = KNeighborsClassifier(n_neighbors=5) knn.fit(X_train, y_train) ``` 这里我们使用KNeighborsClassifier来构建KNN分类器,并将邻居数设置为5。然后,我们使用fit方法对训练集进行拟合。 接下来,我们可以使用测试集来评估分类器的性能。代码如下: ``` python from sklearn.metrics import accuracy_score y_pred = knn.predict(X_test) accuracy = accuracy_score(y_test, y_pred) print("Accuracy:", accuracy) ``` 这里我们使用accuracy_score函数来计算分类器在测试集上的准确率。可以看到,KNN分类器在手写数字数据集上的准确率约为98%左右,表现非常不错。 综上所述,KNN是一种常见的分类算法,适用于许多数据集和应用场景。在实际应用,我们需要根据具体情况选择合适的分类算法和参数,并使用评估指标来评估分类器的性能。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值