(LeetCode 动态规划(基础版))1143. 最长公共子序列(动态规划dp)

题目:1143. 最长公共子序列

在这里插入图片描述

思路:动态规划dp,时间复杂度0(n)。
状态f[i][j]:表示在text1[0,i-1]和text1[0,j-1]之间的最长公共子序列的长度。

C++版本:

class Solution {
public:
    int longestCommonSubsequence(string text1, string text2) {
        int n=text1.size(),m=text2.size();
        vector<vector<int>> f(n+1,vector<int>(m+1,0));
        for(int i=0;i<n;i++){
            for(int j=0;j<m;j++){
                if(text1[i]==text2[j]){
                    f[i+1][j+1]=f[i][j]+1;
                }
                f[i+1][j+1]=max(f[i+1][j+1],f[i+1][j]);
                f[i+1][j+1]=max(f[i+1][j+1],f[i][j+1]);
                f[i+1][j+1]=max(f[i+1][j+1],f[i][j]);
            }
        }
        return f[n][m];
    }
};

JAVA版本:

class Solution {
    public int longestCommonSubsequence(String text1, String text2) {
        int n=text1.length(),m=text2.length();
        int[][] f=new int[n+1][m+1];
        for(int i=0;i<n;i++){
            for(int j=0;j<m;j++){
                if(text1.charAt(i)==text2.charAt(j)){
                    f[i+1][j+1]=f[i][j]+1;
                }
                f[i+1][j+1]=Math.max(f[i+1][j+1],f[i+1][j]);
                f[i+1][j+1]=Math.max(f[i+1][j+1],f[i][j+1]);
                f[i+1][j+1]=Math.max(f[i+1][j+1],f[i][j]);
            }
        }
        return f[n][m];
    }
}

Go版本:

func longestCommonSubsequence(text1 string, text2 string) int {
    n:=len(text1)
    m:=len(text2)
    f:=make([][]int,n+1)
    for i:=range f {
        f[i]=make([]int,m+1)
    }
    for i:=0;i<n;i++ {
        for j:=0;j<m;j++ {
            if text1[i]==text2[j] {
                f[i+1][j+1]=f[i][j]+1;
            }
            f[i+1][j+1]=max(f[i+1][j+1],f[i+1][j])
            f[i+1][j+1]=max(f[i+1][j+1],f[i][j+1])
            f[i+1][j+1]=max(f[i+1][j+1],f[i][j])
        }
    }
    return f[n][m]
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值