前置知识讲解:
01背包讲解
必看的视频讲解↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓
【E09【模板】背包DP 完全背包】
完全背包定义:
完全背包问题是一个经典的算法问题,属于组合优化问题的一种。它来源于实际生活中的背包问题,具体定义如下:
假设有一个背包,能够承载的总重量为W。同时有n个物品,每个物品有一个重量w[i]和价值v[i]。每个物品可以取无限多个,即可以重复选择。完全背包问题的目标是选择一些物品,使得背包的总重量不超过W,同时背包中物品的总价值最大。
数学上,完全背包问题可以用以下方式定义:
- 给定一组物品,每个物品i(1 ≤ i ≤ n)具有重量w[i]和价值v[i]。
- 背包的总承载重量为W。
- 目标是选择物品的组合,使得总重量不超过W,且总价值最大。
这个问题可以通过动态规划(Dynamic Programming, DP)来解决。具体来说,可以定义一个DP数组dp[j],其中dp[j]表示背包容量为j时能够获得的最大价值。状态转移方程如下:
d p [ j ] = max ( d p [ j ] , d p [ j − w [ i ] ] + v [ i ] ) dp[j] = \max(dp[j], dp[j - w[i]] + v[i]) dp[j]=max(dp[j],dp[j−w[i]]+v[i])
其中,i表示当前考虑的物品,j表示当前考虑的背包容量。
完全背包问题与0/1背包问题的主要区别在于,0/1背包问题中每个物品只能选取一次,而完全背包问题中每个物品可以选取无限次。这使得完全背包问题的解决方案相对简单,因为不需要考虑物品是否已经被选取过。
题目:
状态转移方程
更新过程,观察图3的数组更新情况,由于每次只用到1行的数组,因此可以直接省略第一维
01背包和完全背包的代码区别,包括空间优化与非优化代码比较
最后附上完全背包代码:
#include <iostream>
#include <algorithm>
using namespace std;
const int N = 1010;
//v表示体积Volume,w表示价值,weight
int n, m;
int v[N], w[N];
int f[N];
int main()
{
cin >> n >> m;//n是物品种类数量,m是背包的总容量
for (int i = 1; i <= n; i ++ ) cin >> v[i] >> w[i];
for (int i = 1; i <= n; i ++ )
for (int j = v[i]; j <= m; j ++ )
f[j] = max(f[j], f[j - v[i]] + w[i]);
cout << f[m] << endl;//直接输出f【m】是指当容量为m时,对应能装多少价值的东西!
return 0;
}