前置知识讲解:
01背包讲解
必看的视频讲解↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓
【E09【模板】背包DP 完全背包】
完全背包定义:
完全背包问题是一个经典的算法问题,属于组合优化问题的一种。它来源于实际生活中的背包问题,具体定义如下:
假设有一个背包,能够承载的总重量为W。同时有n个物品,每个物品有一个重量w[i]和价值v[i]。每个物品可以取无限多个,即可以重复选择。完全背包问题的目标是选择一些物品,使得背包的总重量不超过W,同时背包中物品的总价值最大。
数学上,完全背包问题可以用以下方式定义:
- 给定一组物品,每个物品i(1 ≤ i ≤ n)具有重量w[i]和价值v[i]。
- 背包的总承载重量为W。
- 目标是选择物品的组合,使得总重量不超过W,且总价值最大。
这个问题可以通过动态规划(Dynamic Programming, DP)来解决。具体来说,可以定义一个DP数组dp[j],其中dp[j]表示背包容量为j时能够获得的最大价值。状态转移方程如下:
d p [ j ] = max ( d p [ j ] , d p [ j − w [ i ] ] + v [ i ] )