AcWing 3. 完全背包问题

前置知识讲解:
01背包讲解
必看的视频讲解↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓
【E09【模板】背包DP 完全背包】

完全背包定义:

完全背包问题是一个经典的算法问题,属于组合优化问题的一种。它来源于实际生活中的背包问题,具体定义如下:

假设有一个背包,能够承载的总重量为W。同时有n个物品,每个物品有一个重量w[i]和价值v[i]。每个物品可以取无限多个,即可以重复选择。完全背包问题的目标是选择一些物品,使得背包的总重量不超过W,同时背包中物品的总价值最大。

数学上,完全背包问题可以用以下方式定义:

  • 给定一组物品,每个物品i(1 ≤ i ≤ n)具有重量w[i]和价值v[i]。
  • 背包的总承载重量为W。
  • 目标是选择物品的组合,使得总重量不超过W,且总价值最大。

这个问题可以通过动态规划(Dynamic Programming, DP)来解决。具体来说,可以定义一个DP数组dp[j],其中dp[j]表示背包容量为j时能够获得的最大价值。状态转移方程如下:

d p [ j ] = max ⁡ ( d p [ j ] , d p [ j − w [ i ] ] + v [ i ] ) dp[j] = \max(dp[j], dp[j - w[i]] + v[i]) dp[j]=max(dp[j],dp[jw[i]]+v[i])

其中,i表示当前考虑的物品,j表示当前考虑的背包容量。

完全背包问题与0/1背包问题的主要区别在于,0/1背包问题中每个物品只能选取一次,而完全背包问题中每个物品可以选取无限次。这使得完全背包问题的解决方案相对简单,因为不需要考虑物品是否已经被选取过。

题目:

在这里插入图片描述

图1 ↑↑↑
# 解题思路

状态转移方程
在这里插入图片描述

图2↑↑

更新过程,观察图3的数组更新情况,由于每次只用到1行的数组,因此可以直接省略第一维

在这里插入图片描述

图3↑

在这里插入图片描述

图4↑

01背包和完全背包的代码区别,包括空间优化与非优化代码比较
在这里插入图片描述

图5↑↑

最后附上完全背包代码:

#include <iostream>
#include <algorithm>

using namespace std;

const int N = 1010;
//v表示体积Volume,w表示价值,weight
int n, m;
int v[N], w[N];
int f[N];

int main()
{
    cin >> n >> m;//n是物品种类数量,m是背包的总容量
    for (int i = 1; i <= n; i ++ ) cin >> v[i] >> w[i];

    for (int i = 1; i <= n; i ++ )
        for (int j = v[i]; j <= m; j ++ )
            f[j] = max(f[j], f[j - v[i]] + w[i]);

    cout << f[m] << endl;//直接输出f【m】是指当容量为m时,对应能装多少价值的东西!

    return 0;
}


weixin073智慧旅游平台开发微信小程序+ssm后端毕业源码案例设计 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
python017基于Python贫困生资助管理系统带vue前后端分离毕业源码案例设计 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

dareu_4523

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值