AcWing 897. 最长公共子序列

动态规划就是多见识应用题就完事儿了,也没有什么好说的。
讲解参考:
【E05 线性DP 最长公共子序列】
在这里插入图片描述
在这里插入图片描述

#include<iostream>
#include<algorithm>
#define N 1010
using namespace std;
char a[N],b[N];
int n,m;
int f[N][N];
int main(){
    cin >> n >> m >> a + 1 >> b + 1 ;
    for(int i = 1; i <= n ; ++ i) {
        for(int j = 1; j <= m ; ++ j){
            if(a[i] == b[j]){
                f[i][j] = f[i - 1][j - 1] + 1;
            }else{
                f[i][j] = max(f[i - 1][j],f[i][j - 1]);
            }
        }
    }
    cout << f[n][m];
    return 0;
}

输出最长公共子序列的代码,(STL版)
Runtime环境:c++17

#include <iostream>
#include <vector>
#include <string>
#include <algorithm>  // 用于 reverse 函数

using namespace std;

pair<int, string> lcs(const string& s1, const string& s2) {
    int m = s1.size();
    int n = s2.size();

    // 初始化 dp 数组
    vector<vector<int>> dp(m + 1, vector<int>(n + 1, 0));

    // 填充 dp 数组
    for (int i = 1; i <= m; ++i) {
        for (int j = 1; j <= n; ++j) {
            if (s1[i - 1] == s2[j - 1]) {
                dp[i][j] = dp[i - 1][j - 1] + 1;
            } else {
                dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);
            }
        }
    }

    // 获取 LCS 的长度
    int lcs_length = dp[m][n];

    // 回溯找到 LCS 序列
    string lcs_seq;
    int i = m, j = n;
    while (i > 0 && j > 0) {
        if (s1[i - 1] == s2[j - 1]) {
            lcs_seq.push_back(s1[i - 1]);
            --i;
            --j;
        } else if (dp[i - 1][j] > dp[i][j - 1]) {
            --i;
        } else {
            --j;
        }
    }

    // 由于回溯是从最后开始的,所以需要反转字符串
    reverse(lcs_seq.begin(), lcs_seq.end());

    return {lcs_length, lcs_seq};
}

int main() {
    string s1 = "ABCBDABQ";
    string s2 = "BDCABQ";

    // 调用 LCS 函数
    auto [length, sequence] = lcs(s1, s2);

    // 输出结果
    cout << "最长公共子序列长度: " << length << endl;
    cout << "最长公共子序列: " << sequence << endl;

    return 0;
}

c版

#include<iostream>
#include<algorithm>
#define N 11
using namespace std;
char a[N],b[N];
int n,m;
int f[N][N];
char seq[N];
int main(){
    cin >> n >> m >> a + 1 >> b + 1 ;
    for(int i = 1; i <= n ; ++ i) {
        for(int j = 1; j <= m ; ++ j){
            f[i][j]=max(f[i-1][j],f[i][j-1]);
            if(a[i]==b[j]) f[i][j]=max(f[i][j],f[i-1][j-1]+1);
        }
    }
    cout << f[n][m] << endl;

    //最长子序列输出
    int i = n , j = m;
    string str;
    while(i&&j){
        if(a[i] == b[j]){
            str += a[i];
            i--,j--;
        }else if(f[i - 1][j] > f[i][j - 1]){
            i--;
        }else{
            j--;
        }
    }//不逆置字符串,直接逆序输出就完事儿了
    for(int i=str.size()-1;i>=0;--i)
        cout << str[i];
    return 0;
}

PS,输出最长子序列的代码我尝试了10位的两个,好像是正确的,输出长度的啃腚没问题,输出最长子序列是啥的没咋仔细验证过,是GPT生成的代码

weixin151云匹面粉直供微信小程序+springboot后端毕业源码案例设计 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

dareu_4523

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值