02-22 决策树C4.5算法

决策树C4.5算法

在这里插入图片描述

  为了解决决策树ID3算法的不足,ID3算法的作者昆兰基于它的不足改进了决策树ID3算法。但是可能会有人有疑问,既然上一个决策树算法叫做ID3算法,为什么改进版本不叫做ID4或者ID5呢?因为当时决策树过于火爆,有人二次创新把ID4、ID5都用掉了,由此作者另辟蹊径把ID3算法的改进版本称为C4算法,后来C4算法又一次升级便有了现在的C4.5算法。

决策树C4.5算法学习目标

  1. 使用C4.5算法对连续特征值离散化
  2. 信息增益比
  3. 使用C4.5算法对特征值加权
  4. 决策树C4.5算法步骤
  5. 决策树C4.5算法优缺点

决策树C4.5算法详解

  上一次说到决策树ID3算法有4个缺点,而这次作者也是基于这4个缺点改进了算法,也就是现在的C4.5算法。

  假设现有一个训练集 D D D,特征集 A A A,训练集中有 m m m个样本,每个样本有 n n n个特征,我们通过该训练集聊一聊作者对C4.5算法做了哪些改进。

连续特征值离散化

  ID3算法的第一个缺点:没有考虑到连续值的情况。

  假设现有一个特征 F F F的特征值为连续值,从大到小排序为 f 1 , f 2 , … , f m f_1,f_2,\ldots,f_m f1,f2,,fm,C4.5算法对相邻样本间的特征值 f i , f i + 1 f_i,f_{i+1} fi,fi+1取平均数,一共可以得到 m − 1 m-1 m1个划分点,其中第 j j j个划分点可以表示为
S j = f i + f i + 1 2 S_j = {\frac {f_i + f_{i+1}} {2}} Sj=2fi+fi+1
对于这 m − 1 m-1 m1个划分点,分别计算以该点作为二元分类点的信息增益比,选择信息增益比最大的点作为该连续特征的二元离散分类点,把改点记作 f t f_t ft,则特征值小于 f t f_t ft的点记作 c 1 c_1 c1;特征值大于 f t f_t ft的点记作 c 2 c_2 c2,这样就实现了连续特征值的离散化。

信息增益比

  ID3算法的第二个缺点:以信息增益作为划分训练数据集的特征,存在于偏向于选择取值较多的特征的问题。

  信息增益作为标准容易偏向于取值较多的特征,因此可以使用信息增益比作为划分节点的标准。信息增益比的概念已经在《熵和信息增益》一文中介绍过,这里只给出公式
g R ( D , A ) = g ( D , A ) H A ( D ) g_R(D,A) = {\frac{g(D,A)}{H_A(D)}} gR(D,A)=HA(D)g(D,A)
  由于特征越多的特征对应的特征熵 H A ( D ) H_A(D) HA(D)越大,则信息增益比 g R ( D , A ) g_R(D,A) gR(D,A)则会变小,因此可以校正信息增益容易偏向于取值较多的特征的问题。

剪枝

  ID3算法的第三个缺点:没有考虑过拟合问题。

  决策树一般采用剪枝的方法解决过拟合问题,剪枝的具体思路将在CART树一文中细讲。

特征值加权

  ID3算法的第四个缺点:没有考虑特征中含有缺失值的情况。

  假设某个特征 F F F有2个特征值 f 1 , f 2 f_1,f_2 f1,f2,先设定缺失 F F F特征的样本 D i D_i Di的关于特征 F F F的特征值权重都为1,即 f 1 f_1 f1 f 2 f_2 f2。假设 2 2 2个特征值对应的无缺失值的样本个数为 3 3 3 5 5 5,现在把特征值 f 1 , f 2 f_1,f_2 f1,f2重新划入样本 D i D_i Di中,在样本 D i D_i Di f 1 f_1 f1的权重调节为 3 8 {\frac{3}{8}} 83 f 2 f_2 f2的权重调节为 5 8 {\frac{5}{8}} 85,即样本 D i D_i Di的特征 F F F的特征值为 3 8 ∗ f 1 和 5 8 ∗ f 2 {\frac{3}{8}}*f_1和{\frac{5}{8}}*f_2 83f185f2

  计算样本 D i D_i Di的特征 F F F的信息增益比的时候,及计算 3 8 ∗ f 1 {\frac{3}{8}}*f_1 83f1 5 8 ∗ f 2 {\frac{5}{8}}*f_2 85f2的信息增益比。

决策树C4.5算法流程

输入

  假设现有一个训练集 D D D,特征集 A A A,阈值 ϵ \epsilon ϵ

输出

  C4.5算法决策树。

流程

  1. 初始化信息增益的阈值 ϵ \epsilon ϵ
  2. 如果 D D D中的所有样本都属于同一类 C k C_k Ck,则返回单节点树 T T T,标记类别为 C k C_k Ck
  3. 如果 A A A为空集,则返回单节点树 T T T,标记类别为 D D D中样本数最大的类 C k C_k Ck
  4. 计算 A A A中各个特征对输出 D D D信息增益比,选择信息增益比最大的 A g A_g Ag
  5. 如果 A g A_g Ag小于阈值 ϵ \epsilon ϵ,则返回单节点数 T T T,标记类别为 D D D中样本数最大的类 C k C_k Ck
  6. 如果 A g A_g Ag大于阈值 ϵ \epsilon ϵ,则按照特征 A g A_g Ag的不同取值 A g i A_{g_i} Agi D D D分割成若干个子集 D i D_i Di,每个子集生成一个子节点,子节点对应特征值为 A g i A_{g_i} Agi,递归调用 2 − 6 2-6 26步,得到子树 T i T_i Ti并返回

决策树C4.5算法的优缺点

优点

  1. 理论清晰,方法简单
  2. 学习能力强

缺点

  1. 只能用于分类
  2. C4.5算法由于使用了熵的概念,即决策树的生成需要大量的熵值计算,并且如果特征值为连续值,还需要进行排序运算
  3. 使用模型较为复杂的多叉树结构

小结

  决策树C4.5算法流程上和决策树ID3算法大相径庭,只是在决策树ID3算法上的某一步流程进行了优化,总而言之,它这种处理方式还是治标不治本的,并且还是无法处理回归问题。

  接下来我们将要将一个改革意义的决策树,目前scikit-learn算法中以及集成学习中都使用该树作为目标决策树,即决策树CART算法。

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值