一、AI 与汽车软件开发的融合趋势
在软件定义汽车的大背景下,汽车软件行业正经历着前所未有的深刻变革。传统汽车主要以机械结构为核心,而如今,汽车逐渐演变为以软件为核心的智能移动平台。随着汽车的硬件和软件架构迅速演变,传统机械结构被现代电气 / 电子架构取代,为车辆赋予了更高级、智能化的功能。
AI 正成为推动汽车软件开发的重要力量。汽车软件行业面临着性能、安全性和功能等多方面的复杂和严苛挑战。性能要求的提高使车辆需更加灵敏、高效;安全性要求促使汽车系统更加可靠和智能;功能要求的增加则推动车辆拥有更多先进智能功能。在这样的挑战下,AI 为汽车软件开发带来了新的解决方案。
例如,生成式 AI 和大型语言模型(LLM)可以在开发初期为汽车软件系统提供框架和桩代码,帮助简化初始架构定义。同时,利用自然语言处理(NLP)工具,将详细的规格和需求文档输入大型语言模型,能自动生成强大的测试套件,确保在敏捷 CI/CD 开发环境中保持 ASPICE 认证。此外,AI 工具还能跟踪数据和执行流程,可视化软件子系统之间的依赖关系,运用混沌工程原则确保测试覆盖率,避免失控。通过生成式 AI 工具扫描提交的代码质量和数量,创新工具和流程以提高效率,揭示潜在安全漏洞。总之,AI 与汽车软件开发的融合趋势日益明显,为汽车软件行业带来了崭新的发展机遇。
二、AI 助力汽车软件开发的具体表现
(一)应对软件架构挑战
在汽车软件开发的初期,传统方法构建复杂系统架构往往耗时费力且难以全面覆盖各种场景。而生成式 AI 和大型语言模型(LLM)则展现出强大的优势。例如,据相关数据显示,在某些汽车软件项目中,利用生成式 AI 和 LLM 生成的架构和设计模式,能够将初始架构定义的时间缩短 30% 以上。这些工具能够快速分析项目需求和现有代码库,为开发人员提供清晰的框架和桩代码,使他们能够更高效地组装工具并交付代码。通过生成式 AI 和 LLM,开发团队可以获得更具创新性和适应性的架构方案,为汽车软件系统的稳定性和可扩展性奠定基础。
(二)保持开发环境认证
自然语言处理(NLP)工具在汽车软件开发的敏捷 CI/CD 环境中发挥着关键作用。在 Toyota 的项目中,详细的规格和需求文档被输入到大型语言模型中,NLP 工具能够快速评估这些文档和问题追踪器。通过对文本的深度分析,NLP 工具可以准确地生成测试用例和期望结果,确保软件在开发过程中始终符合 ASPICE 认证要求。据统计,使用 NLP 工具生成的测试用例,其覆盖率相比传统方法提高了 20% 左右&#