1.题目地址
2.题目描述
输入一个整型数组,数组中的一个或连续多个整数组成一个子数组。求所有子数组的和的最大值。
要求时间复杂度为O(n)。
示例1:
输入: nums = [-2,1,-3,4,-1,2,1,-5,4]
输出: 6
解释: 连续子数组 [4,-1,2,1] 的和最大,为 6。提示:
1 <= arr.length <= 10^5
-100 <= arr[i] <= 100注意:本题与主站 53 题相同:https://leetcode-cn.com/problems/maximum-subarray/
3.思路
使用动态规划,首先单看数组,需要挑选连续子数组时,开头的第一个数必须为正数才能保证最大,因此从第1位起始,若前一位数为正数,则与其相加并将结果赋给该位置;而若前一位数为负数,说明在此位之前,前面的数组已经没有成为最大的可能,因此自立门户保持不变。每次循环,将连续子数组的最大值保存下来,直到循环结束,便可得出连续子数组的最大值。
力扣图示
4.代码
public int maxSubArray(int[] nums) {
int max = nums[0];
for (int i = 1; i < nums.length; i++) {
//若前面数为负数则将当前数重新作为连续子数组的开头。
if (nums[i - 1] > 0) {
nums[i] += nums[i - 1];
}
max = Math.max(max, nums[i]);
}
return max;
}