剑指 Offer 42. 连续子数组的最大和

1.题目地址

力扣

2.题目描述

输入一个整型数组,数组中的一个或连续多个整数组成一个子数组。求所有子数组的和的最大值。

要求时间复杂度为O(n)。

示例1:

输入: nums = [-2,1,-3,4,-1,2,1,-5,4]
输出: 6
解释: 连续子数组 [4,-1,2,1] 的和最大,为 6。

提示:

1 <= arr.length <= 10^5
-100 <= arr[i] <= 100

注意:本题与主站 53 题相同:https://leetcode-cn.com/problems/maximum-subarray/

3.思路

使用动态规划,首先单看数组,需要挑选连续子数组时,开头的第一个数必须为正数才能保证最大,因此从第1位起始,若前一位数为正数,则与其相加并将结果赋给该位置;而若前一位数为负数,说明在此位之前,前面的数组已经没有成为最大的可能,因此自立门户保持不变。每次循环,将连续子数组的最大值保存下来,直到循环结束,便可得出连续子数组的最大值。

力扣图示

 

4.代码

public int maxSubArray(int[] nums) {
        int max = nums[0];
        for (int i = 1; i < nums.length; i++) {
            //若前面数为负数则将当前数重新作为连续子数组的开头。
            if (nums[i - 1] > 0) {
                nums[i] += nums[i - 1];
            }
            max = Math.max(max, nums[i]);
        }
        return max;
    }

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Ricardo0324

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值