图机器学习-图的表示

图的基本表示

图的本体设计

Object: nodes(节点),verdices(顶点) N表示

Interactions:Links,edgeds E表示

System:network,graph G(N,E)表示

在这里插入图片描述

如何设计图取决于想要解决什么问题

图的种类(有向、无向、异质、二分、连接带权重)

有向图和无向图

在这里插入图片描述

异质图(很多图神经网络研究的)

  1. 节点可能会有不同的类型

  2. 连接可能存在不同的类型

在这里插入图片描述

例子

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值