基于opencv的图像颜色识别

使用传统方法对图像颜色进行识别,适用于单个颜色的提取,可以有效地将前景与背景分离。

1.定义HSV颜色空间

图像色彩分为RGB与HSV空间,RGB是一种基于红(Red)、绿(Green)、蓝(Blue)三原色的加色法来产生色彩的表示方法。这三种颜色光以不同比例相加,可以产生多种多样的颜色。

HSV是一种基于色调(Hue)、饱和度(Saturation)、明度(Value)的色彩模型,也称为HSB(B即Brightness)。色调表示颜色的位置在色轮上的位置,饱和度表示颜色纯度,明度表示颜色亮度。

首先根据实际需求定义HSV范围用来判断颜色,本文定义了橙色、深蓝、浅蓝、紫色、粉色、深绿和浅绿色几种(本文定义的HSV范围是根据实际需求设置,不是标准的,不同数据集图像由于光照等因素,其HSV范围会有差异,因此需要具体任务具体分析。)

# 注意:这些值可能需要根据你的图像进行调整
    lower_orange = np.array([0, 30, 30])
    upper_orange = np.array([30, 255, 255])

    lower_light_blue = np.array([100, 30, 180])
    upper_light_blue = np.array([140, 70, 255])
    lower_deep_blue = np.array([100, 100, 50])
    upper_deep_blue = np.array([140, 255, 150])

    lower_purple = np.array([120, 50, 50])  # 可能需要调整以匹配你的图像
    upper_purple = np.array([180, 255, 255])

    lower_pink = np.array([160, 50, 150])  # 较低的饱和度,较高的亮度
    upper_pink = np.array([180, 255, 255])

    lower_light_green = np.array([35, 50, 150])  # 较高的亮度,较低的饱和度
    upper_light_green = np.array([85, 200, 255])
    lower_dark_grean=np.array([30,100,50])
 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值