华南农业大学 OJ系统 8595 钱币组合的问题(优先做)

8595 钱币组合的问题(优先做)

时间限制:300MS 代码长度限制:10KB
提交次数:897 通过次数:398

题型: 编程题 语言: G++;GCC;VC;JAVA

Description

设有n种不同的钱币各若干,可用这n种钱币产生许多不同的面值。
如给定面值7分,有1分3张,2分3张,5分1张,能组成给定面值7分的方法有如下4种:
3个1分+2个2分;   5个;
1个1分+3个2分;   4个;
2个1分+1个5分;   3个;
1个2分+1个5分;   2个。

上面4种方案的最少张数为2个。

你的编程任务:给定面值m,和n种不同面值钱币及其张数,
(1) 求给定面值m能有多少种不同的构成方法数。
(2) 求给定面值m最少要多少张。

输入格式

第1行有1个正整数n(1<=n<=50),表示有n种不同的钱币。
第2行有n个数,分别表示每种钱币的面值v[1]...v[n](0<=v[i]<=100,1<=i<=n)。
第3行有n个数,分别表示每种钱币的张数k[1]...k[n](0<=k[i]<=100,1<=i<=n)。
第4行有1个数,表示给定的面值m (1<=m<=20000)。

输出格式

两行:
第一行:计算出给定面值的不同的方法种数。若无法给出找钱方案,返回0数值。
第二行:计算出给定面值所需的最少张数。若无法给出找钱方案,返回“no possible”(无大写,无标点)。

输入样例

3
1 2 5
3 3 1
7

输出样例

4
2

提示

(1)给定面值m的不同方法种数

给定的总面值m,n种钱币,每种钱币面值v[1...n],每种钱币的张数k[1...n],
用一个二维数组d[i][1...m]记录用前i种钱币组成1...m面值产生的方法数。1<=i<=n。
初始,该数组全清零,然后逐个加入第i种面值的钱币(1<=i<=n),并修改影响到数组d的方法数。

设d[i,j]:表示前i种钱币组成面值j分的方法数,1<=i<=n,0<=j<=m。(j>=0才有意义,若j<0,可视为d[i,j]=0)
d[i,0] = 1,  if 1<=i<=n
d[1,j] = 1,  if j%v[1]=0 && j/v[1]<=k[1];
d[1,j] = 0,  if j%v[1]!=0 || j/v[1]>k[1] || j<0;

if i>1 && j1 && v[i]<=j<2*v[i]
d[i,j] = d[i-1,j] + d[i-1,j-v[i]]

if i>1 && 2*v[i]<=j<3*v[i]
d[i,j] = d[i-1,j] + d[i-1,j-v[i]] + d[i-1,j-2*v[i]]

......

if i>1 && k[i]*v[i]<=j<=m
d[i,j] = d[i-1,j] + d[i-1,j-1*v[i]] + d[i-1,j-2*v[i]] + ... + d[i-1,j-k[i]*v[i]]
   //这里要注意,要保证 j-k[i]*v[i]>=0 才有意义,对可能的越界(无论是左边越界还是右边越界),都要仔细审查。

最后d[n,m]为原问题所求。

当然由于这里的d数组d[i,j]只与d[i-1,...]有关,也完全可以用一维数组d[1...m]来实现。


(2)求给定面值m最少要多少张

假设c[i][j]表示:选择前i种面值的钱,凑成面值j的最少张数,这里1<=i<=n, 0<=j<=m。
c[i][j]的递归关系如下:

令:t = min{ (int)(j/v[i]), k[i] },表示第i种钱币最多加入的张数。
c[i][j] = min{ p+c[i-1][j-p*v[i]] | p from 0 to t },这里p表示第i种币值选入的张数,
                                                         t表示第i种币值最多选入的张数。
//这里要注意,要保证 j-p*v[i]>=0 才有意义,对可能的越界(无论是左边越界还是右边越界),都要仔细审查。

初始条件:
c[i][0]=0, 1<=i<=n
c[1][j]=int(j/v[1]),   if j%v[1]==0 && j/v[1]<=k[1]
c[1][j]=MAXINT,        if j%v[1]!=0 || j/v[1]>k[1] 
      //此处MAXINT为自定义的无穷大的数,表示没法放。

最后返回c[n][m],若c[n][m]为MAXINT,则无法找到找钱的方案。

代码

package three;

import java.util.Scanner;

public class test8595 {
    public static void main(String[] args) {
        Scanner scanner = new Scanner(System.in);
        int n = scanner.nextInt();
        int[] v = new int[n + 1];
        int[] k = new int[n + 1];
        for (int i = 1; i <= n; i++) {
            v[i] = scanner.nextInt();
        }
        for (int i = 1; i <= n; i++) {
            k[i] = scanner.nextInt();
        }
        int m = scanner.nextInt();
//        设d[i,j]:表示前i种钱币组成面值j分的方法数
        int[][] d = new int[n + 1][m + 1];
//        假设c[i][j]表示:选择前i种面值的钱,凑成面值j的最少张数,这里1<=i<=n, 0<=j<=m。
        int[][] c = new int[n + 1][m + 1];
        q(n, m, v, k, d);
        System.out.println(d[n][m]);
        p(n, m, v, k, c);
        if (c[n][m] == 2147483647) {
            System.out.println("no possible");
        } else
            System.out.println(c[n][m]);
//        for (int i = 1; i <= n; i++) {
//            for (int j = 1; j <= m; j++) {
//                System.out.print(c[i][j] + " ");
//            }
//            System.out.println();
//        }
    }

    private static void p(int n, int m, int[] v, int[] k, int[][] c) {
        for (int i = 1; i <= n; i++) {
            c[i][0] = 0;
        }
        for (int j = 1; j <= m; j++) {
            if (j % v[1] == 0 && j / v[1] <= k[1]) {
                c[1][j] = (int) j / v[1];
            } else {
//                定义最大值
                c[1][j] = 2147483647;
            }
        }
        for (int i = 2; i <= n; i++) {
            for (int j = 1; j <= m; j++) {
                int p = Math.min(j / v[i], k[i]);
                int min = c[i - 1][j];
                for (int t = p; t >= 0; t--) {
                    if (min - t > c[i - 1][j - t * v[i]]) {
                        min = c[i - 1][j - t * v[i]] + t;
                    }
                }
                c[i][j] = min;
            }
        }
    }

    private static void q(int n, int m, int[] v, int[] k, int[][] d) {
        for (int i = 1; i <= n; i++) {
            d[i][0] = 1;
        }
        for (int j = 1; j <= m; j++) {
            if (j % v[1] == 0 && j / v[1] <= k[1]) {
                d[1][j] = 1;
            } else {
                d[1][j] = 0;
            }
        }
        for (int i = 2; i <= n; i++) {
            for (int j = 1; j <= m; j++) {
                int min = Math.min(j / v[i], k[i]);
                for (int t = min; t >= 0; t--) {
                    d[i][j] = d[i][j] + d[i - 1][j - t * v[i]];
                }
            }
        }
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值