MNN模型部署问题:unsigned char* 转化为 MNN::Express::VARP

在计算机视觉和深度学习应用中,常需在不同框架间转换数据。本文介绍将OpenCV的Mat对象转换为MNN::CV中VARP对象的方法,包括加载图像创建Mat对象并转为unsigned char*、将Mat转为Tensor对象、再将Tensor转为VARP对象,可用于MNN框架计算。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

OpenCV Mat对象如何转化为MNN::CV中VARP

在计算机视觉和深度学习应用中,经常需要在不同框架之间转换数据,特别是涉及图像处理时。OpenCV 和 MNN::CV 都是常用的图像处理库,本文将介绍如何将 OpenCV 的 Mat 对象转换为 MNN::CV 中的 VARP 对象,以便在 MNN 框架中进行进一步的计算。

整个过程如下:

  1. 如何使用 OpenCV加载图像并创建 Mat 对象 ,将会带来全新的写作体验;
  2. 如何将 OpenCV Mat 转换为 MNN::CV 中的 Tensor 对象
  3. 如何将 MNN::CV 的 Tensor 对象转换为 MNN::CV 中的 VARP 对象,以供 MNN 框架使用

步骤 1:加载图像并创建 OpenCV Mat 对象,并转化为unsigned char*

首先,使用 OpenCV 加载图像并创建一个 Mat 对象。Mat 对象是 OpenCV 中表示图像的常用数据结构。

cv::Mat image = cv::imread("./needle0.png");

if (image.empty()) {
	   std::cout << "Failed to load image!" << std::endl;
	   return -1;
}

// 获取图像的宽、高和通道数
int width = image.cols;
int height = image.rows;
int channels = image.channels();

// 将图像转换为 unsigned char* 格式
unsigned char* imgData = image.data;

步骤 2:将 OpenCV Mat 转换为 MNN::CV Tensor 对象

接下来,我们将 OpenCV Mat 转换为 MNN::CV 中的 Tensor 对象。这需要根据图像的通道数、高度和宽度来创建适当的 Tensor。

// 创建一个 Tensor 用于存储图像数据
MNN::Tensor::DimensionType dim_type = MNN::Tensor::TENSORFLOW;
std::vector<int> dims1{1, height, width, channels};
auto tensor = MNN::Tensor::create<u_int8_t>(dims1, NULL, dim_type);

auto tensorData = tensor->host<u_int8_t>();
auto tensor_size = tensor->size();
std::memcpy(tensorData, image.data, tensor_size);

步骤 3:将 MNN::CV Tensor 转换为 MNN::CV VARP 对象

最后,我们可以将 MNN::CV 的 Tensor 转换为 MNN::CV 中的 VARP 对象,以供 MNN 框架使用。

// 创建一个 MNN::Express::VARP,将张量封装为表达式的形式
auto original_image = MNN::Express::_Const(tensorData,dims1,MNN::Express::NHWC,halide_type_of<u_int8_t>());
original_image = _Squeeze(original_image,{0});

通过上述步骤,您可以将 OpenCV Mat 对象转换为 MNN::CV 中的 VARP 对象,以便在 MNN 框架中进行深度学习计算和图像处理操作。

请注意,上述代码中使用了 MNN::CV 的一些函数和类,您需要确保正确引入 MNN::CV 相关的头文件和库。同时,您也可以根据实际需求对代码进行适当的修改和优化。

总结

本文介绍了如何将 OpenCV Mat 对象转换为 MNN::CV 中的 VARP 对象,使您能够在 MNN 框架中进行深度学习计算和图像处理操作。这在涉及多个图像处理和计算框架的项目中是非常有用的技能,帮助您更灵活地处理和转换数据。

// MNN 中的 CV 相关功能,您需要引入相应的头文件,然后读取图片
#include <MNN/ImageProcess.hpp>
#include <MNN/expr/Module.hpp>
#include <MNN/expr/Executor.hpp>
#include <MNN/expr/ExprCreator.hpp>
#include <MNN/expr/Executor.hpp>
#include <MNN/expr/Expr.hpp>

using namespace MNN;
using namespace MNN::Express;
using namespace MNN::CV;

auto original_image = imread("./needle1.png");
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值