有序数组的平方:有序数组的平方
首先附上代码:
class Solution {
public int[] sortedSquares(int[] nums) {
int left = 0;
int right = nums.length - 1;
int[] res = new int[nums.length];//定义一个和之前数组长度一样的数组
int target = nums.length - 1;//指向res数组
while(left <= right){ //left <= right边界条件想清楚
if(nums[left]*nums[left] > nums[right]*nums[right]){
res[target] = nums[left]*nums[left];
target--;
left++; //当负数平方大于右边的正数平方时 left往右移动
}else{
res[target] = nums[right]*nums[right];
target--;
right--;//正数平方大 left不动 right继续往左移动
}
}
return res;
}
}
看到题目刚开始没有想到可以用双指针,看了一下讲解后觉得双指针是真的很适合解决这一类数组移动的问题。经典的双指针的应用
在这道题中我遇到的问题主要是循环判断的边界条件没有弄的很清楚,倒是输出一直报错,代入了数据发现left = right的边界也是可以的。
长度最小的子数组:长度最小的子数组
给定一个含有 n 个正整数的数组和一个正整数 s ,找出该数组中满足其和 ≥ s 的长度最小的 连续 子数组,并返回其长度。如果不存在符合条件的子数组,返回 0。
示例:
输入:s = 7, nums = [2,3,1,2,4,3] 输出:2 解释:子数组 [4,3] 是该条件下的长度最小的子数组。
看到这道题的第一反应,根本没有想到可以用滑动窗口的解法。用暴力解法也很容易出问题
附上代码:
class Solution {
public int minSubArrayLen(int target, int[] nums) {
int res = Integer.MAX_VALUE;
int i = 0;
int sublength = 0;
int sum = 0;
for(int j = 0;j<nums.length;j++){
sum += nums[j];
while(sum >= target){ //当sum大于等于target的时候开始滑动窗口
sublength = j-i+1;
res = res < sublength ? res : sublength;
sum = sum - nums[i];
i++; //变化i,i为子序列开始的索引
}
}
return res == Integer.MAX_VALUE?0:res;
}
}
滑动窗口的想法在处理这个问题的时候真的很好用,但是自己根本就想不到,还是得多多联系。
在使用滑动窗口的时候遇到了一些问题。i始终指向的是子数组的开始索引,i在不停的变化,j也在不停的变化,所以才能实现窗口的滑动。使用while来判断sum和target也很容易想错,我最开始一直在纠结为什么不能用if,后来想清楚第一次获得的子数组可能并不是最短的子数组,所以此时还需要再进行一次判断,将子数组的第一个减去再来进行判断,直到子数组的和小于target。
螺旋矩阵II:螺旋矩阵
给定一个正整数 n,生成一个包含 1 到 n^2 所有元素,且元素按顺时针顺序螺旋排列的正方形矩阵。
示例:
输入: 3 输出: [ [ 1, 2, 3 ], [ 8, 9, 4 ], [ 7, 6, 5 ] ]
看到题目的第一眼,有点束手无策,感觉有点无从下手的感觉。
看了下讲解视频后才逐步理解,下去之后还需要多多联系。
附上代码:
class Solution {
public int[][] generateMatrix(int n) {
int loop = 0; //控制循环次数
int startx = 0;
int starty = 0;
int[][] res = new int[n][n];
int offset = 1; //偏移量
int count = 1;
while(loop < n/2){
int i = startx;
int j = starty;
for(j = starty; j < n-offset;j++){
res[startx][j] = count++;
}
for(i = startx; i < n-offset;i++){
res[i][j] = count++;
}
for(;j>startx;j--){
res[i][j] = count++;
}
for(;i > starty;i--){
res[i][j] = count++;
}
startx++;
starty++;
offset++;
loop++;
}
if(n%2 == 1){ //是取余!!!!!
res[startx][starty] = count;
}
return res;
}
}
其实这道题没有最主要考查的是逻辑,以及对于变量的处理。
做这一道题的时候需要时刻保持我们处理边界条件是始终一致的,就例如我上面的代码就是每一条边都只处理0~n-1条数据,这样处理每一条边的时候就不会出现混乱,始终保持一致,循环遍历。
什么时候该停止循环?
这个问题其实也值得注意一下,带入数字更容易理解,如果n为4就是循环两次,n为3就是1次。所以循环的条件应该是n/2。
再就是我在写这一题代码的过程中把%和/弄混淆了。值得注意