备战蓝桥杯填空题2——第十一届模拟题
今天是个简单的排列组合题,有了高中数学的基础,这道题简直小case啦!
话不多说,上题咯:
【问题描述】将LANQIAO中的字母重新排列,可以得到不同的单词,如LANQIAO、AAILNOQ等,注意这7个字母都要被用上,单词不一定有具体的英文意义。请问,总共能排列如多少个不同的单词。
【答案提交】这是一道结果填空的题,你只需要算出结果后提交即可。本题的结果为一个整数,在提交答案时只填写这个整数,填写多余的内容将无法得分。
题解:
*方法一:
从题目中可知,由L、A、N、Q、I、A、O这七个字母排列,其中有两个(A)字母重复,所以把它当作“特殊”元素,优先进行排列。七个字母,所以有七个位置,这两个A可以在七个位置中任选两个位置, 也就是有C(7,2)=7!/2!=21种。
再看剩下的五个元素,就是在剩下的五个位置进行全排列,也就是 A(5,5)=5!=120 种,因此一共有
C(7,2)*A(5,5)=2520种
因此答案为
2520
*方法二:
一共有七个字母,将其进行全排列共有:A(7,7)=7!=5040种。由于A字母有2个,所以我们需要再除以A(2,2)=2来去掉重复项,因此有5040/2 = 2520种。
答案为2520。