数据结构——图中结点、边和度之间的关系总结

备战蓝桥杯

依旧是二蛋小白的迷惑日常,不会的东西很多,但还好我们还有机会。抓住一点一滴,我们共同努力。这篇博文想给大家分享一些图论的相关知识,很重要哦!

首先,提到图论 ,你一定会想到有向图和无向图,下面让我们来依次总结这两部分的内容吧。

有向图*
在有向图中有以下几点结论:

1.所有顶点的度数之和 等于 边数的二倍。
2.所有顶点的入度之和 等于 出度之和。
3.n个顶点的有向完全图有n*(n-1)条边。
4.n个顶点的强连通图至少有n条边。

无向图*
在无向图中有以下几点结论:

1.所有顶点的度数之和 等于 边数的二倍。
2.n个顶点的无向完全图有 n(n-1)/2 条边。
3.n个顶点的连通图至少有 n-1 条边。

了解了以上内容,我们来看蓝桥杯第十一届模拟题:

*【问题描述】一个包含有2019个结点的有向图,最多包含多少条边?(不允许有重边)【答案提交】
这是一道结果填空的题,你只需要算出结果后提交即可。本题的结果为一个整数,在提交答案时只填写这个整数,填写多余的内容将无法得分。

题解:
方法一:如果记住了前面的结论,知道含有n个结点的有向图,最多含有n(n-1)条边的话,此题解法很快算出:2019*(2019-1)=4,074,342。
答案为:4,074,342

方法二:如果你忘记了结论,那没有关系,我们可以自己推理:
假设只有三个顶点,v1,v2,v3。因为是求最多的边,所以从v1开始,与v2之间有两条边,与v3之间有两条边(v1指向v2和v2指向v1)。在看v2,因为不能有重复的边,所以v2只能与v3之间有两条边。因此三个顶点有4+2=6条边。那么如果有四个顶点,就会是6+4+2=12条边,以此类推,有n个顶点就是有2+4+6+…+2*(n-1)条边,根据等差数列求和公式,可以推出n个顶点有n*(n-1)条边。从而得出2019个结点具有2019*(2019-1)=4,074,342
答案为:4,074,342

*这些结论无论是在离散数学中还是在数据结构中都是很重要的内容,一定要牢牢地记在心里哦!

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值