SQL优化

SQL优化


插入数据:

  • 批量插入
insert into tb_test values(1,'tom'),(2,'cat'),(3,'jerry');
  • 手动提交事务
start transaction;
insert into tb_test values(1,'tom'),(2,'cat'),(3,'jerry');
commit;
  • 主键顺序插入

建议顺序插入,性能比乱序插入好

  • 大批量插入数据

如果一次性需要插入大批量数据,使用insert语句插入性能较低,此时可以使用MySQL数据库提供的load指令进行插入。操作如下:

# 客户端连接服务端时,加上参数 --local-infile
mysql --local-infile -u root -p

# 设置全局参数local_infile 为1,开启从本地加载文件导入数据的开关
set global local_infile = 1;

# 执行load指令将准备好的数据,加载到表结构中
load data local infile '/root/sql1.log' into table `tb_user` fields terminated by ',' lines terminated by '\n';

博客连接:https://www.cnblogs.com/yuejucai/archive/2018/08/23/9526015.html

主键优化:

  • 数据组织方式

在InnoDB存储引擎中,表数据都是根据主键顺序组织存放的,这种存储方式的表称为索引组织表(index organized table IOT)。

在这里插入图片描述

  • 页分裂

页可以为空,也可以填充一半,也可以填充100%。每个页包含了2-N行数据(如果一行数据多大,会行溢出),根据主键排列。

主键顺序插入:

在这里插入图片描述

主键乱序插入:

在这里插入图片描述

  • 页合并:

当删除一行记录时,实际上记录并没有被物理删除,只是记录被标记(flaged)为删除并且它的空间变得允许被其他记录声明使用。

当页中删除的记录达到MERGE_THRESHOLD(默认为页的50%),InnoDB会开始寻找最靠近的页(前或后)看看是否可以将两个页合并以优化空间使用。

在这里插入图片描述

  • 主键设计原则
    • 满足业务需求的情况下,尽量降低主键的长度
    • 插入数据时,尽量选择顺序插入,选择使用AUTO_INCREMENT自增主键
    • 尽量不要使用UUID作主键或这是其他自然主键,如身份证号
    • 业务操作时,避免对主键的修改

这里为什么尽量不要主键太长嫩?

因为InnoDB存储引擎有个辅助索引,他的叶子节点存储的是表的主键,如果太长会占用磁盘空间

order by 优化:

1、Using filesort:通过表的索引或全表扫描,读取满足条件的数据行,然后在排序缓冲区sort buffer中完成排序操作,所有不是通过索引直接返回排序结果的排序都叫FileSort 排序。
2、Using index:通过有序索引顺序扫描直接返回有序数据,这种情况即为using index,不需要额外排序,操作效率高。

mysql> explain select id ,name ,score from iqiyi order by score;
+----+-------------+-------+------------+------+---------------+------+---------+------+------+----------+----------------+
| id | select_type | table | partitions | type | possible_keys | key  | key_len | ref  | rows | filtered | Extra          |
+----+-------------+-------+------------+------+---------------+------+---------+------+------+----------+----------------+
|  1 | SIMPLE      | iqiyi | NULL       | ALL  | NULL          | NULL | NULL    | NULL | 2273 |   100.00 | Using filesort |
+----+-------------+-------+------------+------+---------------+------+---------+------+------+----------+----------------+
1 row in set, 1 warning (0.00 sec)

创建索引后:

mysql> create index idx_iqiyi_score on iqiyi(score);

# 这里还可以指定索引是升序还是降序
mysql> create index idx_iqiyi_score_desc on iqiyi(score desc);
Query OK, 0 rows affected (0.04 sec)
Records: 0  Duplicates: 0  Warnings: 0

mysql> explain select id ,name ,score from iqiyi order by score;
+----+-------------+-------+------------+------+---------------+------+---------+------+------+----------+----------------+
| id | select_type | table | partitions | type | possible_keys | key  | key_len | ref  | rows | filtered | Extra          |
+----+-------------+-------+------------+------+---------------+------+---------+------+------+----------+----------------+
|  1 | SIMPLE      | iqiyi | NULL       | ALL  | NULL          | NULL | NULL    | NULL | 2273 |   100.00 | Using filesort |
+----+-------------+-------+------------+------+---------------+------+---------+------+------+----------+----------------+
1 row in set, 1 warning (0.00 sec)

mysql> explain select id  ,score from iqiyi order by score desc;
+----+-------------+-------+------------+-------+---------------+----------------------+---------+------+------+----------+-------------+
| id | select_type | table | partitions | type  | possible_keys | key                  | key_len | ref  | rows | filtered | Extra       |
+----+-------------+-------+------------+-------+---------------+----------------------+---------+------+------+----------+-------------+
|  1 | SIMPLE      | iqiyi | NULL       | index | NULL          | idx_iqiyi_score_desc | 6       | NULL | 2273 |   100.00 | Using index |
+----+-------------+-------+------------+-------+---------------+----------------------+---------+------+------+----------+-------------+
1 row in set, 1 warning (0.00 sec)

mysql> explain select id  ,score from iqiyi order by score asc;
+----+-------------+-------+------------+-------+---------------+-----------------+---------+------+------+----------+-------------+
| id | select_type | table | partitions | type  | possible_keys | key             | key_len | ref  | rows | filtered | Extra       |
+----+-------------+-------+------------+-------+---------------+-----------------+---------+------+------+----------+-------------+
|  1 | SIMPLE      | iqiyi | NULL       | index | NULL          | idx_iqiyi_score | 6       | NULL | 2273 |   100.00 | Using index |
+----+-------------+-------+------------+-------+---------------+-----------------+---------+------+------+----------+-------------+
1 row in set, 1 warning (0.00 sec)

创建索引优化语法:

# 根据age,phone进行降序一个升序,一个降序
explain select id,age,phone from tb_user order by age asc,phone desc;

# 创建索引
create index idx_user_age_phone_ad on tb_user(age asc,phone desc);

# 根据age,phone进行降序一个升序,一个降序
explain select id,age,phone from tb_user order by age asc,phone desc;
小结:
  • 根据排序字段建立合适的索引,多字段排序时,也遵循最左前缀法则
  • 尽量使用覆盖索引
  • 多字段排序,一个升序一个降序,此时需要注意联合索引在创建时的规则(asc/desc)
  • 如果不可避免的出现filesort,大数据量排序时,可以适当的增大排序缓冲区大小sort_buffer_size(默认是256k)

group by 优化:

在分组操作时,可以通过索引来提高效率

在分组操作时,索引的使用也是满足最左前缀法则的

# 没使用到索引时
mysql> explain select job_education, count(*) from chinahr group by job_education;
+----+-------------+---------+------------+------+---------------+------+---------+------+------+----------+-----------------+
| id | select_type | table   | partitions | type | possible_keys | key  | key_len | ref  | rows | filtered | Extra           |
+----+-------------+---------+------------+------+---------------+------+---------+------+------+----------+-----------------+
|  1 | SIMPLE      | chinahr | NULL       | ALL  | NULL          | NULL | NULL    | NULL | 9735 |   100.00 | Using temporary |
+----+-------------+---------+------------+------+---------------+------+---------+------+------+----------+-----------------+
1 row in set, 1 warning (0.00 sec)

创建索引:

mysql> create index idx_chinahr_job_education on chinahr(job_education);
Query OK, 0 rows affected (0.10 sec)
Records: 0  Duplicates: 0  Warnings: 0

mysql> explain select job_education, count(*) from chinahr group by job_education;
+----+-------------+---------+------------+-------+---------------------------+---------------------------+---------+------+------+----------+-------------+
| id | select_type | table   | partitions | type  | possible_keys             | key                       | key_len | ref  | rows | filtered | Extra       |
+----+-------------+---------+------------+-------+---------------------------+---------------------------+---------+------+------+----------+-------------+
|  1 | SIMPLE      | chinahr | NULL       | index | idx_chinahr_job_education | idx_chinahr_job_education | 1023    | NULL | 9735 |   100.00 | Using index |
+----+-------------+---------+------------+-------+---------------------------+---------------------------+---------+------+------+----------+-------------+
1 row in set, 1 warning (0.00 sec)

limit 优化:

一个常见又非常头疼的问题就是limit 2000000,10,此时需要MySQL排序前2000010记录,仅仅返回2000000 - 2000010的记录,其他记录丢弃,查询排序的代价非常大。

优化思路:一般分页查询时,通过创建覆盖索引能够比较好地提高性能,可以通过覆盖索引加子查询形式进行优化。

mysql> select * from job limit 100000,10;
10 rows in set (0.14 sec)

mysql> select job_id from job limit 100000,10;
10 rows in set (0.11 sec)

mysql> select * from job_id where job_id in (select job_id from job limit 100000,10);
ERROR 1235 (42000): This version of MySQL doesn't yet support 'LIMIT & IN/ALL/ANY/SOME subquery;

mysql> select * from job j,(select job_id from job limit 100000,10) ji where j.job_id = ji.job_id;
10 rows in set (0.09 sec)

count 优化:

  • MyISAM引擎把一个表的总行数存在了磁盘中,因此执行count(*)的时候会直接返回这个数,效率很高,但是加了where条件就会很慢
  • InnoDB引擎就麻烦了,他执行count(*)的时候,需要把数据一行一行的从引擎里面读出来,然后累计技术。

优化思路:自己计数

count()是一个聚合函数,对于返回的结果集,一行行的判断,如果count函数的参数不是NULL,累计值就加1,否则不加,最后返回累计值。

用法:count(*) 、count(主键)、count(字段)、count(1)

  • count(主键)

InnoDB引擎会遍历整张表,把每一行的主键id值都取出来,返回给服务层。服务层拿到主键后,直接按行进行累加(主键不可能为nul)。

  • count(字段)

没有not null约束:InnoDB引擎会遍历整张表把每一行的字段值都取出来,返回给服务层,服务层判断是否为null,不为null,计数累加。有not null约束: InnoDB引擎会遍历整张表把每一行的字段值都取出来,返回给服务层,直接按行进行累加。

  • count(1)

InnoDB引擎遍历整张表,但不取值。服务层对于返回的每一行,放一个数字“1”进去,直接按行进行累加。

  • count(*)

InnoDB引擎并不会把全部字段取出来,而是专门做了优化,不取值,服务层直接按行进行累加。

按效率排序的话,count(字段)<count(主键id)<count(1)≈count(*),

所以尽量使用count(*)

update优化:

InnoDB的行锁是针对索引加的锁,不是针对记录加的锁,并且该索引不能失效,否则会从行锁升级为表锁。


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

毕竟尹稳健

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值