SQL优化
插入数据:
- 批量插入
insert into tb_test values(1,'tom'),(2,'cat'),(3,'jerry');
- 手动提交事务
start transaction;
insert into tb_test values(1,'tom'),(2,'cat'),(3,'jerry');
commit;
- 主键顺序插入
建议顺序插入,性能比乱序插入好
- 大批量插入数据
如果一次性需要插入大批量数据,使用insert语句插入性能较低,此时可以使用MySQL数据库提供的load指令进行插入。操作如下:
# 客户端连接服务端时,加上参数 --local-infile
mysql --local-infile -u root -p
# 设置全局参数local_infile 为1,开启从本地加载文件导入数据的开关
set global local_infile = 1;
# 执行load指令将准备好的数据,加载到表结构中
load data local infile '/root/sql1.log' into table `tb_user` fields terminated by ',' lines terminated by '\n';
博客连接:https://www.cnblogs.com/yuejucai/archive/2018/08/23/9526015.html
主键优化:
- 数据组织方式
在InnoDB存储引擎中,表数据都是根据主键顺序组织存放的,这种存储方式的表称为索引组织表(index organized table IOT)。
- 页分裂
页可以为空,也可以填充一半,也可以填充100%。每个页包含了2-N行数据(如果一行数据多大,会行溢出),根据主键排列。
主键顺序插入:
主键乱序插入:
- 页合并:
当删除一行记录时,实际上记录并没有被物理删除,只是记录被标记(flaged)为删除并且它的空间变得允许被其他记录声明使用。
当页中删除的记录达到MERGE_THRESHOLD(默认为页的50%),InnoDB会开始寻找最靠近的页(前或后)看看是否可以将两个页合并以优化空间使用。
- 主键设计原则
- 满足业务需求的情况下,尽量降低主键的长度
- 插入数据时,尽量选择顺序插入,选择使用AUTO_INCREMENT自增主键
- 尽量不要使用UUID作主键或这是其他自然主键,如身份证号
- 业务操作时,避免对主键的修改
这里为什么尽量不要主键太长嫩?
因为InnoDB存储引擎有个辅助索引,他的叶子节点存储的是表的主键,如果太长会占用磁盘空间
order by 优化:
1、Using filesort:通过表的索引或全表扫描,读取满足条件的数据行,然后在排序缓冲区sort buffer中完成排序操作,所有不是通过索引直接返回排序结果的排序都叫FileSort 排序。
2、Using index:通过有序索引顺序扫描直接返回有序数据,这种情况即为using index,不需要额外排序,操作效率高。
mysql> explain select id ,name ,score from iqiyi order by score;
+----+-------------+-------+------------+------+---------------+------+---------+------+------+----------+----------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+-------+------------+------+---------------+------+---------+------+------+----------+----------------+
| 1 | SIMPLE | iqiyi | NULL | ALL | NULL | NULL | NULL | NULL | 2273 | 100.00 | Using filesort |
+----+-------------+-------+------------+------+---------------+------+---------+------+------+----------+----------------+
1 row in set, 1 warning (0.00 sec)
创建索引后:
mysql> create index idx_iqiyi_score on iqiyi(score);
# 这里还可以指定索引是升序还是降序
mysql> create index idx_iqiyi_score_desc on iqiyi(score desc);
Query OK, 0 rows affected (0.04 sec)
Records: 0 Duplicates: 0 Warnings: 0
mysql> explain select id ,name ,score from iqiyi order by score;
+----+-------------+-------+------------+------+---------------+------+---------+------+------+----------+----------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+-------+------------+------+---------------+------+---------+------+------+----------+----------------+
| 1 | SIMPLE | iqiyi | NULL | ALL | NULL | NULL | NULL | NULL | 2273 | 100.00 | Using filesort |
+----+-------------+-------+------------+------+---------------+------+---------+------+------+----------+----------------+
1 row in set, 1 warning (0.00 sec)
mysql> explain select id ,score from iqiyi order by score desc;
+----+-------------+-------+------------+-------+---------------+----------------------+---------+------+------+----------+-------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+-------+------------+-------+---------------+----------------------+---------+------+------+----------+-------------+
| 1 | SIMPLE | iqiyi | NULL | index | NULL | idx_iqiyi_score_desc | 6 | NULL | 2273 | 100.00 | Using index |
+----+-------------+-------+------------+-------+---------------+----------------------+---------+------+------+----------+-------------+
1 row in set, 1 warning (0.00 sec)
mysql> explain select id ,score from iqiyi order by score asc;
+----+-------------+-------+------------+-------+---------------+-----------------+---------+------+------+----------+-------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+-------+------------+-------+---------------+-----------------+---------+------+------+----------+-------------+
| 1 | SIMPLE | iqiyi | NULL | index | NULL | idx_iqiyi_score | 6 | NULL | 2273 | 100.00 | Using index |
+----+-------------+-------+------------+-------+---------------+-----------------+---------+------+------+----------+-------------+
1 row in set, 1 warning (0.00 sec)
创建索引优化语法:
# 根据age,phone进行降序一个升序,一个降序
explain select id,age,phone from tb_user order by age asc,phone desc;
# 创建索引
create index idx_user_age_phone_ad on tb_user(age asc,phone desc);
# 根据age,phone进行降序一个升序,一个降序
explain select id,age,phone from tb_user order by age asc,phone desc;
小结:
- 根据排序字段建立合适的索引,多字段排序时,也遵循最左前缀法则
- 尽量使用覆盖索引
- 多字段排序,一个升序一个降序,此时需要注意联合索引在创建时的规则(asc/desc)
- 如果不可避免的出现filesort,大数据量排序时,可以适当的增大排序缓冲区大小sort_buffer_size(默认是256k)
group by 优化:
在分组操作时,可以通过索引来提高效率
在分组操作时,索引的使用也是满足最左前缀法则的
# 没使用到索引时
mysql> explain select job_education, count(*) from chinahr group by job_education;
+----+-------------+---------+------------+------+---------------+------+---------+------+------+----------+-----------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+---------+------------+------+---------------+------+---------+------+------+----------+-----------------+
| 1 | SIMPLE | chinahr | NULL | ALL | NULL | NULL | NULL | NULL | 9735 | 100.00 | Using temporary |
+----+-------------+---------+------------+------+---------------+------+---------+------+------+----------+-----------------+
1 row in set, 1 warning (0.00 sec)
创建索引:
mysql> create index idx_chinahr_job_education on chinahr(job_education);
Query OK, 0 rows affected (0.10 sec)
Records: 0 Duplicates: 0 Warnings: 0
mysql> explain select job_education, count(*) from chinahr group by job_education;
+----+-------------+---------+------------+-------+---------------------------+---------------------------+---------+------+------+----------+-------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+---------+------------+-------+---------------------------+---------------------------+---------+------+------+----------+-------------+
| 1 | SIMPLE | chinahr | NULL | index | idx_chinahr_job_education | idx_chinahr_job_education | 1023 | NULL | 9735 | 100.00 | Using index |
+----+-------------+---------+------------+-------+---------------------------+---------------------------+---------+------+------+----------+-------------+
1 row in set, 1 warning (0.00 sec)
limit 优化:
一个常见又非常头疼的问题就是limit 2000000,10,此时需要MySQL排序前2000010记录,仅仅返回2000000 - 2000010的记录,其他记录丢弃,查询排序的代价非常大。
优化思路:一般分页查询时,通过创建覆盖索引能够比较好地提高性能,可以通过覆盖索引加子查询形式进行优化。
mysql> select * from job limit 100000,10;
10 rows in set (0.14 sec)
mysql> select job_id from job limit 100000,10;
10 rows in set (0.11 sec)
mysql> select * from job_id where job_id in (select job_id from job limit 100000,10);
ERROR 1235 (42000): This version of MySQL doesn't yet support 'LIMIT & IN/ALL/ANY/SOME subquery;
mysql> select * from job j,(select job_id from job limit 100000,10) ji where j.job_id = ji.job_id;
10 rows in set (0.09 sec)
count 优化:
- MyISAM引擎把一个表的总行数存在了磁盘中,因此执行count(*)的时候会直接返回这个数,效率很高,但是加了where条件就会很慢
- InnoDB引擎就麻烦了,他执行count(*)的时候,需要把数据一行一行的从引擎里面读出来,然后累计技术。
优化思路:自己计数
count()是一个聚合函数,对于返回的结果集,一行行的判断,如果count函数的参数不是NULL,累计值就加1,否则不加,最后返回累计值。
用法:count(*) 、count(主键)、count(字段)、count(1)
- count(主键)
InnoDB引擎会遍历整张表,把每一行的主键id值都取出来,返回给服务层。服务层拿到主键后,直接按行进行累加(主键不可能为nul)。
- count(字段)
没有not null约束:InnoDB引擎会遍历整张表把每一行的字段值都取出来,返回给服务层,服务层判断是否为null,不为null,计数累加。有not null约束: InnoDB引擎会遍历整张表把每一行的字段值都取出来,返回给服务层,直接按行进行累加。
- count(1)
InnoDB引擎遍历整张表,但不取值。服务层对于返回的每一行,放一个数字“1”进去,直接按行进行累加。
- count(*)
InnoDB引擎并不会把全部字段取出来,而是专门做了优化,不取值,服务层直接按行进行累加。
按效率排序的话,count(字段)<count(主键id)<count(1)≈count(*),
所以尽量使用count(*)
update优化:
InnoDB的行锁是针对索引加的锁,不是针对记录加的锁,并且该索引不能失效,否则会从行锁升级为表锁。