python LCA: Brightway2 环境影响蒙特卡洛Monte Carlo分析

该博客介绍了如何使用Python库Brightway2进行生命周期评估(LCA)中的环境影响不确定性分析,特别是蒙特卡洛模拟。作者通过示例代码展示了对GWP、PMFP和EDP等多个影响因子进行Monte Carlo分析的过程,并引用了相关研究工作。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

点赞发Nature
关注中Science

Ecoinvent等生命周期数据库都会给不同的过程(process)设置一个不确定性分布,以更好地模拟真实过程中地不确定性。我们可以利用brightway2这个python包做一个不同过程地蒙特卡洛分析。

下面的代码实现了对多个影响因子,如GWP (CO2 emission), PMFP (PM emission), EDP (oil equivalent consumption)的Monte Carlo不确定性分析。

import brightway2 as bw
import numpy as np
import pandas as pd

def multiImpactMonteCarloLCA(functional_unit, list_methods, iterations):
    # Step 1
    MC_lca = bw.MonteCarloLCA(functional_unit)
    MC_lca.lci()
    # Step 2
    C_matrices = {
   }
    # Step 3
    for method in list_methods:
        MC_lca
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值