图论及其应用:第三次作业
题一 最多可以将地球分成几个区域,使任何两个区域都相邻。
将每个区域看成一个点,如果两个区域相邻,则在这两个点之间有边,以为任意两个区域相邻,所以形成的图是一个完全图,同时该图一定是平面图(因为是地球),由于当 n ≥ 3 n\geq3 n≥3 时平面图满足 m ≤ 3 n − 6 m\leq{3n-6} m≤3n−6 所以有 n ( n − 1 ) 2 ≤ 3 n − 6 \frac{n(n-1)}{2}\leq{3n-6} 2n(n−1)≤3n−6 ,解得 3 ≤ n ≤ 4 3\leq{n}\leq{4} 3≤n≤4 ,所以地球最多可以分为四个区域。
题二 证明有 10 个顶点的 5 正则图不是平面图。
记 G = ( n , m ) G=(n,m) G=(n,m)
由题意可知, 2 m = ∑ v ∈ V d ( v ) = 50 2m=\sum_{v\in{V}d(v)}=50 2m=∑v∈Vd(v)=50 ,即 m = 25 m=25 m=25 ,且 3 n − 6 = 24 3n-6=24 3n−6=24
所以 m > 3 n − 6 m>3n-6 m>3n−6 。故图 G G G 不是平面图。
题三 考察图 G ≜ (V, E),记 χ(G) 为 G 的点色数,证明:
• 如果 ∀v ∈ V : χ(G - v) = χ(G) - 1, G 连通;
反证法。 假设 $ G$ 不连通,不妨设 G G G 有连通分支 G 1 G_1 G1 和 G 2 G_2 G2 ,设 χ ( G 1 ) = χ ( G ) , χ ( G 2 ) ≤ χ ( G ) \chi(G_1)=\chi(G),\chi(G_2)\leq\chi(G) χ(G1)=χ(G),χ(G2)≤χ(G) ,则若删去 G 2 G2 G2中的一点,则 G 1 G1 G1 点色数不变,即 χ ( G ) = m a x { χ ( G 1 ) , χ ( G 2 ) } = χ ( G ) ≠ χ ( G ) − 1 \chi(G)=max\{\chi(G_1),\chi(G_2)\}=\chi(G)\neq\chi(G)-1 χ(G)=max{χ(G1),χ(G2)}=χ(G)=χ(G)−1 ,矛盾。所以 G G G 是完全图。
• 如果 ∀x, y ∈ V : χ(G - x - y) = χ(G) - 2, G 是完全图。
解:
**反证法。**假设 G G G 不是完全图,则存在至少两个点 u , v u,v u,v ,并且 u , v u,v u,v 之间没有边,则 u , v u,v u,v 可着相同种颜色,则删去这两个点, χ ( G − u − v ) = χ ( G ) − 1 ≠ χ ( G ) − 2 \chi(G-u-v) = \chi(G)-1\neq\chi(G)-2 χ(G−u−v)=χ(G)−1=χ(G)−2 ,矛盾,所以 G G G 是完全图。
题四 图 G 有 n 个顶点,记 G¯ 为 G 的补图,证明:8.1.4
• χ(G)χ(G¯) ≥ n;
设 χ ( G ) = k \chi(G)=k χ(G)=k,则 G G G中有 k k k个色组,则其中至少有一个色组有 ⌈ n k ⌉ \lceil \frac{n}{k}\rceil ⌈kn⌉个,这个色组内部任意两点之间都没有边,则在 G ‾ \overline{G} G中,这个色组内的任意两点之间都有边,即是完全图,所以色数至少为 ⌈ n k ⌉ \lceil \frac{n}{k}\rceil ⌈kn⌉种,因此 χ ( G ) χ ( G ‾ ) ≥ k ∗ ⌈ n k ⌉ ≥ n \chi(G)\chi(\overline{G})\ge k*\lceil \frac{n}{k}\rceil\ge n χ(G)χ(G)≥k∗⌈kn⌉≥n
• χ(G) + χ(G¯) ≤ n + 1。
证法一:
设 χ ( G ) = k \chi(G)=k χ(G)=k,则 G G G中有 k k k个色组,则最大的色组的点个数 ≤ n − k + 1 \le n-k+1 ≤n−k+1,且不同色组在 G ‾ \overline G G中是不连通的,所以 χ ( G ‾ ) ≤ n − k + 1 \chi(\overline G)\le n-k+1 χ(G)≤n−k+1,所以 χ ( G ) + χ ( G ‾ ) ≤ n + 1 \chi(G)+\chi(\overline G)\le n+1 χ(G)+χ(G)≤n+1
证法二:
**推论:**假设 G G G 有度序列 ( d 1 , d 2 , . . . , d v ) (d_1,d_2,...,d_v) (d1,d2,...,dv) ,且 d 1 ≥ d 2 ≥ . . . ≥ d v d_1\geq d_2\geq ... \geq d_v d1≥d2≥...≥dv ,则图 G G G 至少有 χ \chi χ 个 度数不小于 χ − 1 \chi-1 χ−1 的顶点。
存在 k 1 ≥ χ ( G ) , k 2 ≥ χ ( G ¯ ) k_1\geq \chi(G),k_2\geq \chi(G¯) k1≥χ(G),k2≥χ(G¯) ,使得 d ( k 1 ) ≥ χ ( G ) + 1 , d ( k 2 ) ≥ χ ( G ¯ ) + 1 d(k_1)\geq\chi(G)+1,d(k_2)\geq\chi(G¯)+1 d(k1)≥χ(G)+1,d(k2)≥χ(G¯)+1 ,下面分两种情况讨论:
i)若 k 2 ≥ v − k 1 + 1 k_2\geq v-k_1+1 k2≥v−k1+1 ,则 n − 1 = d ( k 1 ) + d ( v − k 1 + 1 ) ≥ d ( k 1 ) + d ( k 2 ) ≥ χ ( G ) − 1 + χ ( G ¯ ) − 1 n-1 = d(k_1)+d(v-k_1+1)\geq d(k_1)+d(k_2)\geq\chi(G)-1+\chi(G¯)-1 n−1=d(k1)+d(v−k1+1)≥d(k1)+d(k2)≥χ(G)−1+χ(G¯)−1 即 χ ( G ) + χ ( G ¯ ) ≤ n + 1 \chi(G)+\chi(G¯)\leq n+1 χ(G)+χ(G¯)≤n+1 。
ii)若 k 2 < v − k 1 + 1 k_2<v-k_1+1 k2<v−k1+1 ,则 v + 1 = k 1 + ( v − k 1 + 1 ) ≥ k 1 + k 2 ≥ χ ( G ) + χ ( G ¯ ) v+1=k_1+(v-k_1+1)\geq k_1+k_2\geq \chi(G)+\chi(G¯) v+1=k1+(v−k1+1)≥k1+k2≥χ(G)+χ(G¯)。
题五 3 正则图 G 的边色数为 4,证明 G 不是 H 图。
**反证法:**因为 G G G是 3 3 3正则图,所以 G G G的顶点数应该是偶数,假设 G G G 是H图,则存在哈密顿回路,则哈密顿回路的长度为偶数,使用两种颜色交替染色,对于每个顶点还剩下一条边,使用第三种颜色将第三条边进行染色,这样就得到了一种的的染色方案,只需要三种颜色与边色数为4产生矛盾,所以 G G G不是 H H H图
题六 给定一个点色数为 k 的 k 染色方案,证明对任何一种颜色 c,均存在 c 颜色的顶点,其邻居包含所有其他颜色。
**反证法。**如果对某一种颜色 c c c,对所有c颜色的顶点,邻居都不包含所有其他颜色,则可以分别将这个 c c c颜色的顶点改成邻居缺少的那种颜色,这样就可以以 k − 1 k-1 k−1种颜色完成染色,与点色数为 k k k产生矛盾。
题七 给定 n 个顶点, m 条边的图 G,证明 G 包含一个偶子图 H,其边的数目至少为 2 ⌊ n 2 / 4 ⌋ m n ( n − 1 ) \frac{2⌊n2/4⌋m}{n(n - 1)} n(n−1)2⌊n2/4⌋m。
随机选择两个点,这两个点之间有边的概率为 m n ( n − 1 ) 2 = 2 m n ( n − 1 ) \frac{m}{\frac{n(n-1)}{2}}=\frac{2m}{n(n-1)} 2n(n−1)m=n(n−1)2m
将整个图分为两个部分,一部分有 ⌈ n 2 ⌉ \lceil\frac{n}{2}\rceil ⌈2n⌉ 个顶点,一部分有 ⌊ n 2 ⌋ \lfloor\frac{n}{2}\rfloor ⌊2n⌋ 个顶点,则这两部分边数的数学期望为
C ( ⌈ n 2 ⌉ , 1 ) ∗ C ( ⌊ n 2 ⌋ , 1 ) ∗ 2 m n ( n − 1 ) = 2 ⌊ n 2 / 4 ⌋ m n ( n − 1 ) C(\lceil\frac{n}{2}\rceil,1)*C(\lfloor\frac{n}{2}\rfloor,1)*\frac{2m}{n(n-1)}=\frac{2\lfloor{n^2/4\rfloor m}}{n(n-1)} C(⌈2n⌉,1)∗C(⌊2n⌋,1)∗n(n−1)2m=n(n−1)2⌊n2/4⌋m
所以我们至少能找到一个偶子图 H H H 边的数目至少为 2 ⌊ n 2 / 4 ⌋ n ( n − 1 ) \frac{2\lfloor{n^2/4\rfloor}}{n(n-1)} n(n−1)2⌊n2/4⌋ ,否则所有偶子图的边都小于这个值,则期望不可能为这个值。
因此 G G G 包含一个偶子图$ H$ ,其边数至少为 2 ⌊ n 2 / 4 ⌋ n ( n − 1 ) \frac{2\lfloor{n^2/4\rfloor}}{n(n-1)} n(n−1)2⌊n2/4⌋ 。
题八 证明任何平面图最少有 4 个度数小于 6 的顶点。
解:
记 G = ( n , m ) G=(n,m) G=(n,m)
若 v ⩽ 6 v\leqslant6 v⩽6 ,则每个顶点最多与五个顶点相连,显然成立。
对于 v > 6 v>6 v>6 ,若 δ ( G ) = 1 \delta(G)=1 δ(G)=1 ,设 δ ( v 0 ) = 1 \delta(v_0)=1 δ(v0)=1 ,考虑 G 1 = G − v 0 G_1=G-v_0 G1=G−v0 ,显然若 G 1 G_1 G1 对于上述结论成立,则 G G G 也成立。故下面总假定 δ ( G ) ≥ 2 \delta(G)\geq2 δ(G)≥2 。若 G G G 为2正则图,显然符合题设结论。
下面讨论 δ ( G ) > 2 \delta(G)>2 δ(G)>2 或者 δ ( G ) = 2 \delta(G)=2 δ(G)=2 但存在度数大于2的顶点的情况
反证法。若 G G G 度数小于6的顶点不多于3个,有 2 m = ∑ v ∈ V d ( v ) > 2 ∗ 3 + 6 ( n − 3 ) = 6 n − 12 2m=\sum_{v\in{V}}d(v)>2*3+6(n-3)=6n-12 2m=∑v∈Vd(v)>2∗3+6(n−3)=6n−12, 即 m > 3 n − 6 m>3n-6 m>3n−6 ,与欧拉公式的推论 m ≤ 3 n − 6 m\leq3n-6 m≤3n−6相矛盾 ,所以G至少有四个度数小于6的顶点。
题九 对 p = 1/n 的随机图 G n p G_{np} Gnp,证明 ∀ϵ > 0,大概率不存在多于 (1 + ϵ)n/2 个顶点的连通分支。
要证大概率不存在 ( 1 + ϵ ) n 2 \frac{(1+\epsilon)n}{2} 2(1+ϵ)n 个顶点的连通分支,由于 m + 1 m+1 m+1 个顶点的连通图至少需要 m m m条边,因此我们可以证明图 G n p G_{np} Gnp大概率少于 ( 1 + ϵ ) n 2 \frac{(1+\epsilon)n}{2} 2(1+ϵ)n 条边,这样即使这些边都位于一个连通子图,那个子图的顶点数也不会多于 ( 1 + ϵ ) n 2 \frac{(1+\epsilon)n}{2} 2(1+ϵ)n 个。
边的数目服从二项分布,期望为 n − 1 2 \frac{n-1}{2} 2n−1,方差为 ( n − 1 ) 2 2 n \frac{(n-1)^2}{2n} 2n(n−1)2
设实际边数为 X X X ,则我们考虑 P ( ∣ X − n − 1 2 ∣ ≥ ( 1 + ϵ ) n 2 − n − 1 2 = ϵ n + 1 2 ) P(|X-\frac{n-1}{2}|\geq\frac{(1+\epsilon)n}{2}-\frac{n-1}{2}=\frac{\epsilon n+1}{2}) P(∣X−2n−1∣≥2(1+ϵ)n−2n−1=2ϵn+1) 即实际边数大于等于 ( 1 + ϵ ) n 2 \frac{(1+\epsilon)n}{2} 2(1+ϵ)n 的概率,则有
P ( ∣ X − n − 1 2 ∣ ≥ ( 1 + ϵ ) n 2 − n − 1 2 = ϵ n + 1 2 ) < P ( ∣ X − n − 1 2 ∣ ≥ ϵ n 2 ) P(|X-\frac{n-1}{2}|\geq\frac{(1+\epsilon)n}{2}-\frac{n-1}{2}=\frac{\epsilon n+1}{2})<P(|X-\frac{n-1}{2}|\geq\frac{\epsilon n}{2}) P(∣X−2n−1∣≥2(1+ϵ)n−2n−1=2ϵn+1)<P(∣X−2n−1∣≥2ϵn) 。
由切比雪夫不等式可得 P ( ∣ X − n − 1 2 ∣ ≥ ϵ n 2 ) ≤ σ 2 ( ϵ n ) 2 = 2 ( n − 1 ) 2 ϵ 2 n 3 P(|X-\frac{n-1}{2}|\geq\frac{\epsilon n}{2})\leq \frac{\sigma^2}{(\epsilon n)^2}=\frac{2(n-1)^2}{\epsilon^2 n^3} P(∣X−2n−1∣≥2ϵn)≤(ϵn)2σ2=ϵ2n32(n−1)2,所以随着n增大,这个概率趋近于0,因此对 p = 1 n p=\frac{1}{n} p=n1的随机图 G n , p G_{n,p} Gn,p,大概率不存在多于 ( 1 + ϵ ) n 2 \frac{(1+\epsilon)n}{2} 2(1+ϵ)n个顶点的连通分支。