Pow(x,n)---快速幂算法

题目

实现 pow(x, n) ,即计算 x 的 n 次幂函数。
示例:

输入: 2.00000, 10
输出: 1024.00000

输入: 2.10000, 3
输出: 9.26100

输入: 2.00000, -2
输出: 0.25000
解释: 2-2 = 1/22 = 1/4 = 0.25

说明:

  • -100.0 < x < 100.0
  • n 是 32 位有符号整数,其数值范围是 [−231, 231 − 1] 。

解决方案

分别是递归和迭代两个版本,当指数 n 为负数时,我们可以计算 x-n再取倒数得到结果,因此我们只需要考虑 n 为自然数的情况。

思考过程(个人的错误解法,可略过)
考虑到计算n次幂,就想到用循环来解决,xn看作是y*x的n-1次循环(y0=x)。n小于0的情况下取n的绝对值,计算出循环后的值后用1除该值,即取倒数;n大于0时,若n为1则计算结果为x本身,其他情况则循环n-1次乘x;n等于0时,计算结果为1 。

class Solution {
public:
    double myPow(double x, int n) {
        double y=x;
        if(n<0){
            for(n=-n;n-1>0;n--){
                y=y*x;
            }
            y=1/y;
        }
        else if(n==0){
            y=1;
        }
        else if(n==1){
            y=x;
        }
        else{
            for(;n-1>0;n--){
                y=y*x;
            }
        }
        return y;
    }
};

错误原因:暴力计算,效率太低导致程序超时。

方法一:快速幂+递归
「快速幂算法」的本质是分治算法。举个例子,如果我们要计算 x64
,我们可以按照:

x→x2→x4→x8→x16→x32→x64

的顺序,从 x 开始,每次直接把上一次的结果进行平方,计算 6 次就可以得到 x64的值,而不需要对 x 乘 63 次 x。

这是2的整数次幂,如果n是奇数或者不是2的整数次幂该怎么办呢?
比如 x77 ,可以按照:

x→x2→x4→x9→x19→x38→x77

从x4后就进行的是平方后乘 x,其中19到38是平方,直接从左到右进行推导看上去很困难,因为在每一步中,我们不知道在将上一次的结果平方之后,还需不需要额外乘 x。但如果我们从右往左看,分治的思想就十分明显了:

  • 要计算 xn,先算 y = xn/2,根据递归结果,n为偶数时,xn = y2;n为奇数时,n/2向下取整,xn = y2*x 。
  • 以0为边界,n为0时,任意数的0次方均为1.

由于每次递归都会使得指数减少一半,因此递归的层数为 O(log n),算法可以在很快的时间内得到结果。

class Solution {
public:
    double quick(double x,long long n){
        double y;
        if(n==0){
            return 1.0;
        }
        y=quick(x,n/2);
        return n%2==0 ? y*y : y*y*x;
     }
    double myPow(double x, int n) {
        long long N = n;
        return n>=0 ? quick(x,N) : 1.0/quick(x,-N);
    }
};

方法二 快速幂+迭代
由于递归需要使用额外的栈空间,我们试着将递归转写为迭代。在方法一中,我们也提到过,从左到右进行推导是不容易的,因为我们不知道是否需要额外乘 xx。但我们不妨找一找规律,看看哪些地方额外乘了 xx,并且它们对答案产生了什么影响。

还是以x77为例:

x→x2→x4→+x9→+x19→x38→+x77

并且把需要额外乘 xx 的步骤打上了 + 标记。可以发现:

  • x38→+x77中额外乘的x在x77中贡献了x
  • x9→+x19中额外乘的x在x之后平方了2次,在x77中贡献了x的22次方,即x4
  • x4→+x9中额外乘的x在之后平方了3次,在x77中贡献了x的23次方,即x8
  • 最初的x在之后平方了6次,因此在x77中贡献了x的26次方,即x64

把这些贡献相乘就得到了x77,而这些贡献的指数部分又是什么呢?它们都是 2 的幂次,这是因为每个额外乘的 x 在之后都会被平方若干次。而这些指数 1,4,8 和 64,恰好就对应了 77 的二进制表示 (1001101)2中的每个 1!

因此我们借助整数的二进制拆分,就可以得到迭代计算的方法,下面的代码给出了详细的注释。

class Solution {
public:
    double quickMul(double x, long long N) {
        double ans = 1.0;
        // 贡献的初始值为 x
        double x_contribute = x;
        // 在对 N 进行二进制拆分的同时计算答案
        while (N > 0) {
            if (N % 2 == 1) {
                // 如果 N 二进制表示的最低位为 1,那么需要计入贡献
                ans *= x_contribute;
            }
            // 将贡献不断地平方
            x_contribute *= x_contribute;
            // 舍弃 N 二进制表示的最低位,这样我们每次只要判断最低位即可
            N /= 2;
        }
        return ans;
    }

    double myPow(double x, int n) {
        long long N = n;
        return N >= 0 ? quickMul(x, N) : 1.0 / quickMul(x, -N);
    }
};

参考文章
作者:LeetCode-Solution
链接:https://leetcode-cn.com/problems/powx-n/solution/powx-n-by-leetcode-solution/
来源:力扣(LeetCode)

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: RSA-CRT 算法是用于加速 RSA 密钥的模幂运算的一种方法。这种方法通过使用 Chinese Remainder Theorem(中国剩余定理)来减少计算量,从而提高效率。 下面是 RSA-CRT 算法的 Python 代码实现: ``` def rsa_crt(m: int, d: int, p: int, q: int, dp: int, dq: int) -> int: qinv = pow(q, p - 2, p) m1 = pow(m, dp, p) m2 = pow(m, dq, q) h = (qinv * (m1 - m2)) % p return m2 + h * q ``` 在这段代码中,`m` 是要解密的信息,`d` 是 RSA 私钥,`p` 和 `q` 是 RSA 密钥的两个质因数,`dp` 和 `dq` 是 RSA 私钥的两个 CRT 参数。 快速幂算法是一种用于快速计算幂的算法,它通过递归的方式来实现。递归的关键在于,对于一个数的幂,如果幂是奇数,则可以用其平方的一半再乘上它本身来得到结果;如果幂是偶数,则可以直接将幂的一半平方来得到结果。 Robin-Miller 算法是一种用于快速计算模的算法。它的基本思想是,对于一个数的模运算,如果模数是奇数,则可以将其分解成两个较小的奇数之和,然后对这两个数分别进行模运算,再将结果相加得 ### 回答2: RSA-CRT算法是一种加密算法,其中使用了两个较慢的算法快速幂算法和Robin-Miller算法。下面是关于这两种算法的精简的Python代码实现。 1. 快速幂算法: ```python # 计算快速幂 def fast_power(base, exponent, modulus): result = 1 base = base % modulus while exponent > 0: if exponent % 2 == 1: result = (result * base) % modulus exponent = exponent // 2 base = (base * base) % modulus return result ``` 2. Robin-Miller算法: ```python # Robin-Miller素性测试 def is_prime(n, k): # 排除小于2的数和偶数 if n < 2 or n % 2 == 0: return False # 定义辅助函数 def cal_s_d(n): d = n - 1 s = 0 while d % 2 == 0: d /= 2 s += 1 return s, d # 进行k次测试 for _ in range(k): a = random.randint(2, n - 1) s, d = cal_s_d(n - 1) x = fast_power(a, d, n) if x == 1 or x == n - 1: continue for _ in range(s - 1): x = (x * x) % n if x == 1: return False if x == n - 1: break else: return False return True ``` 希望以上代码能对您有所帮助,如有任何问题,请随时告诉我。 ### 回答3: RSA-CRT算法中使用了快速幂算法和Robin-Miller算法来提高计算效率。下面是一个使用Python编写的简化代码: # 快速幂算法函数 def fast_power(base, exponent, modulus): result = 1 while exponent > 0: if exponent % 2 == 1: result = (result * base) % modulus base = (base * base) % modulus exponent = exponent // 2 return result # Robin-Miller算法函数 def robin_miller(n): # 根据Robin-Miller算法找到一个与n互质的数a a = 2 while True: if gcd(a, n) == 1: break a += 1 # 使用Robin-Miller算法进行快速判断n是否为素数 x = fast_power(a, n-1, n) if x != 1: return False else: return True # 主程序 def main(): p = 61 # 选择素数p q = 53 # 选择素数q n = p * q # 计算n euler_n = (p - 1) * (q - 1) # 计算n的欧拉函数值 # 使用Robin-Miller算法判断n是否为素数 if robin_miller(n) == False: print("n不是素数") return # 选择一个与euler_n互质的数e e = 17 # 计算e的模反元素d d = 0 while (e * d) % euler_n != 1: d += 1 # 加密 plaintext = 123 # 待加密的明文 ciphertext = fast_power(plaintext, e, n) # 加密后的密文 # 解密 decryptedtext = fast_power(ciphertext, d, n) # 解密后的明文 print("解密后的明文为:", decryptedtext) main()

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值