快速幂算法-Pow(x,n)

一、递归

原理:

        举个例子求解 x^{77} ,不需要对 x 进行 77 次乘法计算,而可以按照   x\rightarrow x^{2}\rightarrow x^{4}\rightarrow x^{9}\rightarrow x^{19}\rightarrow x^{38}\rightarrow x^{77} 的顺序,在 x\rightarrow x^{2},x^{2}\rightarrow x^{4},x^{19}\rightarrow x^{38} 这些步骤中,可以直接把上次的结果进行平方,而在 x^{4}\rightarrow x^{9},x^{9}\rightarrow x^{19},x^{19}\rightarrow x^{38} 这些步骤中,在对上次结果平方后,还需额外乘一个 x 。

        从右往左推导上述过程,利用分治思想,可以得到快速幂算法递归步骤:

        (1)求解 x^{n} ,可以先递归的计算 y= x^{n/2} ;

        (2)根据递归的计算结果,若 n 为偶数,则 x^{n}=y^{2} ;若 n 为奇数,则 x=x*y^{2}

        (3)递归出口为 n = 0,任意数的 0 次方均为 1 。

注意:当 n 为负数时,可以计算 x^{-n} 再取倒数得到结果。

double quickMul(double x,long long N) {
    if(N==0) return 1.0;
    double y=quickMul(x,N/2);
    return N%2==0?y*y : y*y*x;//讨论 N 的奇偶
}

double myPow(double x, int n) {
    long long N=n;//INT_MIN > INT_MAX 故要用long long
    return N>0? quickMul(x,N):1.0/quickMul(x,-N);//讨论 N 的正负
}

二、迭代

原理:

        由于递归需要使用额外的栈空间,故试着将递归转写为迭代。遇到一个问题,就是不知道什么时候需要额外乘一个 x 。需借助 整数的二进制拆分 :

x^{n}=x^{2^{k}}*x^{2^{k-1}}*...*x^{2^{1}}*x^{2^{0}}

从 x 开始不断进行平方,如果如果 n 的第 k 个(从右往左,从 0 开始计数)二进制位为 1,那么我们就将对应的贡献 x^{2^{k}} 计入答案。具体快速幂迭代算法参考下方代码。

double myPow(double x, int n) {
    long long N=n;
    if(N<0) N=-N;
    double res=1.0;
    double x_contribution=x;//贡献值
    while(N>0)
    {
        if(N%2==1) res*=x_contribution;//二进制最低位为 1 ,需把贡献记入结果
        x_contribution*=x_contribution;
        N=N/2;//不断右移, 舍弃 N 二进制的最低位
    }
    if(n<0) return 1.0/res;            
    else return res;
}

  • 2
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

棱角码农

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值