双指针与二分法的应用:剑指 Offer 04. 二维数组中的查找,剑指 Offer 11. 旋转数组的最小数字

这篇博客探讨了如何利用双指针和二分法解决两种编程问题。第一部分介绍了一个n×m的递增矩阵中查找目标值的方法,通过旋转45度后采用双指针策略进行搜索。第二部分讲解了如何在已旋转的数组中找到最小值,这里运用了改进的二分查找技术,着重分析了判断条件和指针更新的细节。这两个实例展示了在数组操作中高效算法的应用。
摘要由CSDN通过智能技术生成

剑指 Offer 04. 二维数组中的查找

由题意可以得知一个n x m的矩阵,性质是自上往下自左往右均为递增。需要查找到目标值,

由题意将矩阵旋转45度可以发现从右上角开始向下为递增,向左为递减,由此可以用双指针判断目标值的大小,根据情况写判断即可

class Solution:
    def findNumberIn2DArray(self, matrix: List[List[int]], target: int) -> bool:
        i,j = len(matrix)-1,0
        while i >=0 and j <len(matrix[0]):
            if matrix[i][j]>target:i-=1
            elif matrix[i][j]<target:j+=1
            else :return True   
        return False

 

剑指 Offer 11. 旋转数组的最小数字

根据题可以得知是一个经过旋转的数组,需要寻找目标值,一般此类型题均为双指针或者二分法的思路

根据此题可以使用二分法,二分法的关键是判断折半的条件以及mid对左右指针的赋值,该题难点就是判断的写法

以456123为例,在中间值判断的时候以右边界为例比大小,mid为6是大于3的,此时应该将左边界变为mid+1,因为如果mid大于right,因为单调递增可以知道最小的一定是在右边。而当此时mid值为2小于右边界时,右边界变为mid,因为此时会出现有可能是mid这个值为最小,赋值mid-1可能会导致掠过这个值,而因为赋值mid,while循环的结束条件应该为right>left,而当右值相等时应特殊考虑,让j减小一个值,不会影响最终的结果,因为左右相等后j-1最小值依然是mid,不影响结果。

code:

class Solution:
    def minArray(self, numbers: List[int]) -> int:
        i,j = 0,len(numbers)-1
        while i < j:
            mid = (i+j)//2
            if numbers[mid]>numbers[j]:
                i = mid+1
            elif numbers[mid]<numbers[j]:
                j = mid 
            else: j -= 1
        return numbers[i]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值