最大公因数 最小公倍数
最大公因数
辗转相除法
辗转相除法:辗转相除法是求两个自然数的最大公约数的一种方法,也叫欧几里德算法。
例如,求(319,377):
∵ 319÷377=0(余319)
∴(319,377)=(377,319);
∵ 377÷319=1(余58)
∴(377,319)=(319,58);
∵ 319÷58=5(余29)
∴ (319,58)=(58,29);
∵ 58÷29=2(余0)
∴ (58,29)= 29;
∴ (319,377)=29。
可以写成右边的格式。
用辗转相除法求几个数的最大公约数,可以先求出其中任意两个数的最大公约数,再求这个最大公约数与第三个数的最大公约数,依次求下去,直到最后一个数为止。最后所得的那个最大公约数,就是所有这些数的最大公约数。
int gcd(int num1,int num2)
{
int a=0;
while(num1%num2 != 0)
{
printf("==========");
a=num1%num2;
num2=a;
}
return num2;
}
最小公倍数
公式法:
最小公倍数等于两数之积除以其最大公约数。
int lcm(int num3,int num4,int num5) //最小公倍数等于两数之积除以其最大公约数
{
int b=0;
b=num3*num4/num5;
return b;
}
最大公因数和最小公倍数整合
#include <stdio.h>
int gcd(int num1,int num2)
{
int a=0;
while(num1%num2 != 0)
{
// printf("==========\n");
a=num1%num2;
num2=a;
}
return num2;
}
int lcm(int num3,int num4,int num5) //最小公倍数等于两数之积除以其最大公约数
{
int b=0;
b=num3*num4/num5;
return b;
}
int main()
{
int m=0,n=0,GCD=0,LCM=0,b=0,tmp=0;
printf("please enter 2 numbers:");
scanf("%d %d",&m,&n);
if(m < n) //m=1,n=2
{
tmp=n; //tmp=2,n=2
n=m; //n=1,m=1
m=tmp; //m=2,tmp=2
//m=2,n=1
}
GCD=gcd(m,n);
//最小公倍数等于两数之积除以其最大公约数
LCM=lcm(m,n,GCD);
printf("Greatest Common Divisor=%d\n",GCD);
printf("Least Common Multiple=%d\n",LCM);
return 0;
}