25.最大公因数 最小公倍数

最大公因数

辗转相除法
辗转相除法:辗转相除法是求两个自然数的最大公约数的一种方法,也叫欧几里德算法。
例如,求(319,377):
∵ 319÷377=0(余319)
∴(319,377)=(377,319);
∵ 377÷319=1(余58)
∴(377,319)=(319,58);
∵ 319÷58=5(余29)
∴ (319,58)=(58,29);
∵ 58÷29=2(余0)
∴ (58,29)= 29;
∴ (319,377)=29。
可以写成右边的格式。
用辗转相除法求几个数的最大公约数,可以先求出其中任意两个数的最大公约数,再求这个最大公约数与第三个数的最大公约数,依次求下去,直到最后一个数为止。最后所得的那个最大公约数,就是所有这些数的最大公约数。

int gcd(int num1,int num2)
{
	int a=0;
	
	while(num1%num2 != 0)
	{
		printf("==========");
		a=num1%num2;
		num2=a;
	}
	
	return num2;
}

最小公倍数

公式法:

最小公倍数等于两数之积除以其最大公约数。

int lcm(int num3,int num4,int num5) //最小公倍数等于两数之积除以其最大公约数
{
	int b=0;
	
	b=num3*num4/num5;
	
	return b;
}

最大公因数和最小公倍数整合

#include <stdio.h>

int gcd(int num1,int num2)
{
	int a=0;
	
	while(num1%num2 != 0)
	{
//		printf("==========\n");
		a=num1%num2;
		num2=a;
	}
	
	return num2;
}

int lcm(int num3,int num4,int num5) //最小公倍数等于两数之积除以其最大公约数
{
	int b=0;
	
	b=num3*num4/num5;
	
	return b;
}

int main()
{
	int m=0,n=0,GCD=0,LCM=0,b=0,tmp=0;
	
	printf("please enter 2 numbers:");
	scanf("%d %d",&m,&n);
	
	if(m < n) //m=1,n=2
	{
		tmp=n; //tmp=2,n=2
		n=m; //n=1,m=1
		m=tmp; //m=2,tmp=2
		//m=2,n=1
	}
	
	GCD=gcd(m,n);
	
	//最小公倍数等于两数之积除以其最大公约数
	LCM=lcm(m,n,GCD);
	
	printf("Greatest Common Divisor=%d\n",GCD);
	
	printf("Least Common Multiple=%d\n",LCM);
	
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值