异常检测
文章平均质量分 89
时序数据异常检测
子衿JDD
JDD学习备忘录
展开
-
【论文阅读】MAG:一种用于航天器遥测数据中有效异常检测的新方法
异常检测是保证航天器稳定性的关键。在航天器运行过程中,传感器和控制器产生大量周期较长的多维时间序列遥测数据,以及及时准确地检测航天器内部异常的一个关键点是从大量遥测数据中提取基本特征。然而,由于遥测数据内的耦合关系和时间特征复杂,存在巨大的挑战。为了解决这个问题,我们提出了一种称为最大信息系数注意力图网络 (MAG) 的新方法。原创 2023-11-20 00:25:25 · 1211 阅读 · 0 评论 -
【阅读论文】基于统计特征的无监督时间序列异常检测方法
随着成本的降低和传感器技术的普及,工业生产过程越来越多地从运行中的机器中收集数据。通过使用正确的传感器和适当的技术,对机器的当前运行状态产生有价值的信息。这种提取允许检测机器是否在降级状态下运行,然后,如果有必要,在机器进入故障状态之前中断其运行。机器异常行为的检测是相关的,因为在正确的时间检测可以减少由于机器故障和生产停机造成的财务成本。本工作提出了一种新的无监督方法来检测工业机器中的异常,并在机器进入故障状态之前中断其运行。该方法接收来自多个传感器的一组时间序列数据作为输入。原创 2023-05-06 19:01:44 · 1281 阅读 · 0 评论 -
【阅读论文】USAD:多变量时间序列上的无监督异常检测
IT系统的自动监控是Orange目前面临的挑战。考虑到其IT运营所达到的规模和复杂性,随着时间的推移,用于推断正常和异常行为的测量所需的传感器数量急剧增加,使得传统的基于专家的监督方法变得缓慢或容易出错。在本文中,我们提出了一种快速而稳定的方法,称为基于反向训练的自动编码器的多变量时间序列的无监督异常检测(USAD)。其自动编码器架构使其能够以无监督的方式进行学习。对抗性训练及其架构的使用使其能够隔离异常,同时提供快速训练。原创 2023-04-06 21:29:26 · 3214 阅读 · 0 评论 -
【阅读论文】基于VAE-LSTM混合模型的时间序列异常检测
在这项工作中,我们提出了一种VAE-LSTM混合模型,作为一种无监督的时间序列异常检测方法。我们的模型既利用VAE模块在短窗口上形成稳健的局部特征,又利用LSTM模块在从VAE模块推断的特征之上估计序列中的长期相关性。因此,我们的检测算法能够识别跨越多个时间尺度的异常。我们证明了我们的检测算法在五个现实世界问题上的有效性,并发现我们的方法优于其他三种常用的检测方法。关键词:异常检测、时间序列、深度学习、无监督学习时间序列的异常检测涉及检测时间上的意外系统行为,以提供信息性见解。原创 2023-04-05 21:44:23 · 5803 阅读 · 1 评论 -
【阅读论文】Anomaly Detection in Univariate Time-series: A Survey on the State-of-the-Art
长期以来,时间序列数据的异常检测一直是一个重要的研究领域。关于异常检测方法的研讨会工作一直集中在统计方法上。近年来,已经开发了越来越多的机器学习算法来检测时间序列上的异常。随后,研究人员试图使用(深度)神经网络来改进这些技术。鉴于异常检测方法的数量不断增加,研究主体缺乏对统计、机器学习和深度学习方法的广泛比较评估。本文研究了这三类中的20种单变量异常检测方法。评估是在公开可用的数据集上进行的,这些数据集是时间序列异常检测的基准。通过分析每种方法的准确性以及算法的计算时间,我们对这些异常检测方法的性能有了原创 2023-04-02 20:43:13 · 1829 阅读 · 0 评论 -
【论文阅读】Mind the Gap:An Experimental Evaluation of Imputation of Missing Values Techniques in TS
首先,某些算法显然是一流的。第二个结论是,在severe blackouts 的情况下,没有一种算法能够提供可接受的准确性。不幸的是,人们对它们的相对性能知之甚少,因为现有的比较仅限于相关算法的一小部分或极少数数据集,或者通常两者都有。标题: Mind the Gap: An Experimental Evaluation of Imputation of Missing Values Techniques in Time Series (Mourad Khayati,2020)时间序列 修复缺失值。原创 2023-02-07 15:24:06 · 169 阅读 · 1 评论 -
【论文阅读】Exathlon: A Benchmark for Explainable Anomaly Detection over Time Series
其中一些执行是通过引入六种不同类型的异常事件(例如,行为不当的输入、资源争用、进程失败)的实例来故意干扰的。,包括:(i) 精选的异常数据集,(ii) 用于 AD 和 ED 的新型基准测试方法,以及 (iii) 用于根据提供的数据集和方法实施和评估 AD 和 ED 算法的端到端数据科学管道。,展示了 Exathlon 的数据集、评估方法和端到端数据科学管道设计的实用性。了一个具有挑战性的应用领域,而不是提供多个更小、更简单的数据集几个独立的域。原创 2023-02-04 15:41:54 · 821 阅读 · 1 评论 -
【论文阅读】Cleanits: A Data Cleaning System for Industrial Time Series
Cleanits中的不一致性修复解决方案首先进行分类器预测,然后将不一致的子序列与其对应的属性进行匹配。构建了基于随机森林的分类器,考虑到其对大规模数据的效率和对多维时间序列的高性能。作者: Xiaoou Ding, Hongzhi Wang, Jiaxuan Su, Zijue Li, Jianzhong Li, Hong Gao。(2)在检测之后,使用基于统计的方法以及SD解决方案以我们的模型中定义的最大似然来修复异常点。1)缺失值插补,2)匹配不一致的属性值,以及 3)异常检测和修复。原创 2023-02-02 14:53:10 · 500 阅读 · 1 评论