221.最大正方形(dp)
问题:在一个由 '0'
和 '1'
组成的二维矩阵内,找到只包含 '1'
的最大正方形,并返回其面积。
思路:定义dp[i][j]
表示以第i行第j列元素为右下角的正方形的最大边长。知道了dp
数组的定义,下一步就是列出状态转移方程。首先判断某个元素为右下角所能构成的最大正方形,即这个元素相邻的左边、上边和左上方的元素也一定是某个正方形的右下角,否则最大正方形就是它本身。接下来我们需要求dp[i][j]
的值,也就是最大正方形的边长。可以看出,以左边、上边和左上方为右下角构成正方形的边长最多比以该点为右下角构成的正方形边长多1
。若以它的左边、上边和左上方为右下角构成正方形的边长不一样,加上该点后构成的正方形会缺失某个角落,所以需要取三个正方形中边长最小再加1
就是该点所能构成的最大正方形的边长了,可以看下面的图帮助理解(此图来自lzhlyle的题解)。所以得出状态转移方程:dp[i][j] = 1 + min(dp[i - 1][j],dp[i][j - 1], dp[i - 1][j - 1]);
需要注意的是:
- 当矩阵中的字符为
'0'
时,按照题意是无法构造正方形的。 - 当
i
或j
中至少有一个为0
时,则若可以构成正方形(当前字符不为'0'
),则以该点为右下角所构成的最大正方形为它本身。
class Solution {
public int maximalSquare(char[][] matrix) {
int m = matrix.length, n = matrix[0].length;
int[][] dp = new int[m][n];
int maxArea = 0;
for(int i = 0; i < m; i++){
for(int j = 0; j < n; j++){
if(matrix[i][j] == '1') {
if(i == 0 || j == 0){
dp[i][j] = 1;
} else{
dp[i][j] = 1 + Math.min(dp[i - 1][j], Math.min(dp[i][j - 1], dp[i - 1][j - 1]));
}
}
maxArea = Math.max(maxArea, dp[i][j]);
}
}
return maxArea * maxArea;
}
}