leetcode---- 688.骑士在棋盘上的概率(记忆化dfs和动态规划两种解法)

688.骑士在棋盘上的概率

问题:在一个 n x n 的国际象棋棋盘上,一个骑士从单元格 (row, column) 开始,并尝试进行 k 次移动。行和列是 从 0 开始 的,所以左上单元格是 (0,0) ,右下单元格是 (n - 1, n - 1) 。

象棋骑士有8种可能的走法,如下图所示。每次移动在基本方向上是两个单元格,然后在正交方向上是一个单元格。

每次骑士要移动时,它都会随机从8种可能的移动中选择一种(即使棋子会离开棋盘),然后移动到那里。

骑士继续移动,直到它走了 k 步或离开了棋盘。

返回 骑士在棋盘停止移动后仍留在棋盘上的概率 。

示例:

输入: n = 3, k = 2, row = 0, column = 0
输出: 0.0625
解释: 有两步(到(1,2),(2,1))可以让骑士留在棋盘上。
在每一个位置上,也有两种移动可以让骑士留在棋盘上。
骑士留在棋盘上的总概率是0.0625。

输入: n = 1, k = 0, row = 0, column = 0
输出: 1.00000

思路:

  • 记忆化dfs

这种方法是最容易想到的,比较容易理解,就是模拟计算所给位置节点走k步留在棋盘上的概率,使用额外的数组来减少重复计算。代码如下:

class Solution {
    private Double[][][] memo;
    public double knightProbability(int n, int k, int row, int column) {
        memo = new Double[n][n][k + 1];
        return dfs(n , k, row, column);
    }
	
    //八个方向
    private int[][] dirs = new int[][]{{-2, -1}, {-1, -2}, {1, -2}, {2, -1}, {2, 1}, {1, 2}, {-1, 2}, {-2, 1}};
    private double dfs(int n, int k, int r, int c){
        //base case 出界,停留在棋盘上的概率为0
        if(r < 0 || r >= n || c < 0 || c >= n){
            return 0.0;
        }
        //base case 移动次数用完还在棋盘的情况
        if(k == 0){
            return 1.0;
        }
		
        //该节点已经计算过了
        if(memo[r][c][k] != null){
            return memo[r][c][k];
        }
        
        double p = 0.0;
        //计算当前节点移动 k步,还留在棋盘上的概率
        for(int[] dir : dirs){
            p += dfs(n, k - 1, r + dir[0], c + dir[1]);
        }
		
        //因为当前节点走向8个方向的概率是等概率的 
        p /= 8;
        memo[r][c][k] = p;
        return p;
    }
}
  • 动态规划 当前状态的计算依赖于前面状态的计算

定义dp数组含义:dp[i][j][p],表示从(i, j)位置走p步留在棋盘上的概率。是一种自底向上的计算方法。计算dp[i][j][p]时,走p-1步的八个方位的状态都已经计算出来了。

class Solution {
    public double knightProbability(int n, int k, int row, int column) {
        double[][][] dp = new double[n][n][k + 1];
		
        //边界,当前位置一步也不走留在棋盘上的概率为1
        for(int i = 0; i < n; i++)
            for(int j = 0; j < n; j++)
                dp[i][j][0] = 1.0;

        int[][] dirs = new int[][]{{-2, -1}, {-1, -2}, {1, -2}, {2, -1}, {2, 1}, {1, 2}, {-1, 2}, {-2, 1}};

        for(int p = 1; p <= k; p++){
            for(int i = 0; i < n; i++){
                for(int j = 0; j < n; j++){
                    //状态转移
                    for(int[] dir: dirs){
                        int nr = i + dir[0];
                        int nc = j + dir[1];
                        if(nr < 0 || nr >= n || nc < 0 || nc >= n) continue;
                        dp[i][j][p] += dp[nr][nc][p - 1] / 8;
                    }
                }
            }
        }

        return dp[row][column][k];
    }
}

通过代码我们可以看到,当前状态只依赖于上一个状态,还可以采用二维数组进一步优化空间复杂度。

整理思路,记录博客,以便复习。若有误,望指正~

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 好的,我来用中文回复这个链接:https://leetcode-cn.com/tag/dynamic-programming/ 这个链接是 LeetCode 上关于动态规划的题目集合。动态规划是一种常用的算法思想,可以用来解决很多实际问题,比如最长公共子序列、背包问题、最短路径等等。在 LeetCode 上,动态规划也是一个非常重要的题型,很多题目都需要用到动态规划的思想来解决。 这个链接里包含了很多关于动态规划的题目,按照难度从简单到困难排列。每个题目都有详细的题目描述、输入输出样例、题目解析和代码实现等内容,非常适合想要学习动态规划算法的人来练习和提高自己的能力。 总之,这个链接是一个非常好的学习动态规划算法的资源,建议大家多多利用。 ### 回答2: 动态规划是一种算法思想,通常用于优具有重叠子问题和最优子结构性质的问题。由于其成熟的数学理论和强大的实用效果,动态规划在计算机科学、数学、经济学、管理学等领域均有重要应用。 在计算机科学领域,动态规划常用于解决最优问题,如背包问题、图像处理、语音识别、自然语言处理等。同时,在计算机网络和分布式系统中,动态规划也广泛应用于各种优算法中,如链路优、路由算法、网络流量控制等。 对于算法领域的程序员而言,动态规划是一种必要的技能和知识点。在LeetCode这样的程序员平台上,题目分类和标签设置十分细致和方便,方便程序员查找并深入学习不同类型的算法LeetCode动态规划标签下的题目涵盖了各种难度级别和场景的问题。从简单的斐波那契数列、迷宫问题到可以用于实际应用的背包问题、最长公共子序列等,难度不断递进且话题丰富,有助于开发人员掌握动态规划的实际应用技能和抽象思维模式。 因此,深入LeetCode动态规划分类下的题目学习和练习,对于程序员的职业发展和技能提升有着重要的意义。 ### 回答3: 动态规划是一种常见的算法思想,它通过将问题拆分成子问题的方式进行求解。在LeetCode中,动态规划标签涵盖了众多经典和优美的算法问题,例如斐波那契数列、矩阵链乘法、背包问题等。 动态规划的核心思想是“记忆搜索”,即将中间状态保存下来,避免重复计算。通常情况下,我们会使用一张二维表来记录状态转移过程中的中间值,例如动态规划求解斐波那契数列问题时,就可以定义一个二维数组f[i][j],代表第i项斐波那契数列中,第j个元素的值。 在LeetCode中,动态规划标签下有众多难度不同的问题。例如,经典的“爬楼梯”问题,要求我们计算到n级楼梯的方案数。这个问题解法非常简单,只需要维护一个长度为n的数组,记录到达每一级楼梯的方案数即可。类似的问题还有“零钱兑换”、“乘积最大子数组”、“通配符匹配”等,它们都采用了类似的动态规划思想,通过拆分问题、保存中间状态来求解问题。 需要注意的是,动态规划算法并不是万能的,它虽然可以处理众多经典问题,但在某些场景下并不适用。例如,某些问题的状态转移过程比较复杂,或者状态转移方程中存在多个参数,这些情况下使用动态规划算法可能会变得比较麻烦。此外,动态规划算法也存在一些常见误区,例如错用贪心思想、未考虑边界情况等。 总之,掌握动态规划算法对于LeetCode的学习和解题都非常重要。除了刷题以外,我们还可以通过阅读经典的动态规划书籍,例如《算法竞赛进阶指南》、《算法与数据结构基础》等,来深入理解这种算法思想。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值